BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 28829577)

  • 1. Tree Sampling as a Method to Assess Vapor Intrusion Potential at a Site Characterized by VOC-Contaminated Groundwater and Soil.
    Wilson JL; Limmer MA; Samaranayake VA; Schumacher JG; Burken JG
    Environ Sci Technol; 2017 Sep; 51(18):10369-10378. PubMed ID: 28829577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoforensics: Trees as bioindicators of potential indoor exposure via vapor intrusion.
    Wilson JL; Samaranayake VA; Limmer MA; Burken JG
    PLoS One; 2018; 13(2):e0193247. PubMed ID: 29451904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The passive sampler assisted human exposure risk characterization for tetrachloroethene soil vapor intrusion scenario.
    Kim PG; Tarafdar A; Lee KY; Kwon JH; Hong Y
    Environ Res; 2023 Dec; 238(Pt 2):117238. PubMed ID: 37783324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contaminant Gradients in Trees: Directional Tree Coring Reveals Boundaries of Soil and Soil-Gas Contamination with Potential Applications in Vapor Intrusion Assessment.
    Wilson JL; Samaranayake VA; Limmer MA; Schumacher JG; Burken JG
    Environ Sci Technol; 2017 Dec; 51(24):14055-14064. PubMed ID: 29182871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An assessment of correlations between chlorinated VOC concentrations in tree tissue and groundwater for phytoscreening applications.
    Duncan CM; Brusseau ML
    Sci Total Environ; 2018 Mar; 616-617():875-880. PubMed ID: 29096957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using tree core samples to monitor natural attenuation and plume distribution after a PCE spill.
    Larsen M; Burken J; Machackova J; Karlson UG; Trappt S
    Environ Sci Technol; 2008 Mar; 42(5):1711-7. PubMed ID: 18441825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoscreening as an efficient tool to delineate chlorinated solvent sources at a chlor-alkali facility.
    Yung L; Lagron J; Cazaux D; Limmer M; Chalot M
    Chemosphere; 2017 May; 174():82-89. PubMed ID: 28160680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A pilot study characterizing tetrachloroethylene exposure with exhaled breath in an impacted community.
    Liu S; Yan EZ; Turyk ME; Katta SS; Rasti AF; Lee JH; Alajlouni M; Wallace TE; Catt W; Aikins EA
    Environ Pollut; 2022 Mar; 297():118756. PubMed ID: 34968620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passive soil gas technique for investigating soil and groundwater plume emanating from volatile organic hydrocarbon at Bazian oil refinery site.
    Hamamin DF
    Sci Total Environ; 2018 May; 622-623():1485-1498. PubMed ID: 29890613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detecting vinyl chloride by phytoscreening in the shallow critical zone at sites with potential human exposure.
    Filippini M; Leoncini C; Luchetti L; Emiliani R; Fabbrizi E; Gargini A
    J Environ Manage; 2022 Oct; 319():115776. PubMed ID: 35982574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoscreening with SPME: Variability Analysis.
    Limmer MA; Burken JG
    Int J Phytoremediation; 2015; 17(11):1115-22. PubMed ID: 25942390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vapor-phase exchange of perchloroethene between soil and plants.
    Struckhoff GC; Burken JG; Schumacher JG
    Environ Sci Technol; 2005 Mar; 39(6):1563-8. PubMed ID: 15819210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of Vocs in groundwater at an industrial contamination site using a homemade low-density polyethylene passive diffusion sampler.
    Ma X; Tan Z; Pang L; Liu J
    J Environ Sci (China); 2013 Nov; 25(11):2338-43. PubMed ID: 24552064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative passive soil vapor sampling for VOCs--part 3: field experiments.
    McAlary T; Groenevelt H; Nicholson P; Seethapathy S; Sacco P; Crump D; Tuday M; Hayes H; Schumacher B; Johnson P; Górecki T; Rivera-Duarte I
    Environ Sci Process Impacts; 2014 Mar; 16(3):501-10. PubMed ID: 24513784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Be alert for vapor intrusion of 1,4-dioxane from contaminated groundwater.
    Lin N; Zhong L; Godwin C; Batterman S
    Sci Total Environ; 2022 Jun; 825():153713. PubMed ID: 35149073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-year measurements of chloroethenes in tree cores and groundwater at the SAP Mimoň Site, Northern Bohemia.
    Wittlingerova Z; Machackova J; Petruzelkova A; Trapp S; Vlk K; Zima J
    Environ Sci Pollut Res Int; 2013 Feb; 20(2):834-47. PubMed ID: 23089954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporary vs. Permanent Sub-slab Ports: A Comparative Performance Study.
    Zimmerman JH; Lutes C; Cosky B; Schumacher B; Salkie D; Truesdale R
    Soil Sediment Contam; 2017; 26(3):294-307. PubMed ID: 30147454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative passive soil vapor sampling for VOCs--part 1: theory.
    McAlary T; Wang X; Unger A; Groenevelt H; Górecki T
    Environ Sci Process Impacts; 2014 Mar; 16(3):482-90. PubMed ID: 24469235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analyzing tree cores to detect petroleum hydrocarbon-contaminated groundwater at a former landfill site in the community of Happy Valley-Goose Bay, eastern Canadian subarctic.
    Fonkwe ML; Trapp S
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16137-51. PubMed ID: 27151238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. "Phytoscreening": the use of trees for discovering subsurface contamination by VOCs.
    Sorek A; Atzmon N; Dahan O; Gerstl Z; Kushisin L; Laor Y; Mingelgrin U; Nasser A; Ronen D; Tsechansky L; Weisbrod N; Graber ER
    Environ Sci Technol; 2008 Jan; 42(2):536-42. PubMed ID: 18284159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.