BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 28829741)

  • 1. Selective rab11 transport and the intrinsic regenerative ability of CNS axons.
    Koseki H; Donegá M; Lam BY; Petrova V; van Erp S; Yeo GS; Kwok JC; Ffrench-Constant C; Eva R; Fawcett JW
    Elife; 2017 Aug; 6():. PubMed ID: 28829741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ARF6 and Rab11 as intrinsic regulators of axon regeneration.
    Nieuwenhuis B; Eva R
    Small GTPases; 2020 Nov; 11(6):392-401. PubMed ID: 29772958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EFA6 regulates selective polarised transport and axon regeneration from the axon initial segment.
    Eva R; Koseki H; Kanamarlapudi V; Fawcett JW
    J Cell Sci; 2017 Nov; 130(21):3663-3675. PubMed ID: 28935671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rab11 and its effector Rab coupling protein contribute to the trafficking of beta 1 integrins during axon growth in adult dorsal root ganglion neurons and PC12 cells.
    Eva R; Dassie E; Caswell PT; Dick G; ffrench-Constant C; Norman JC; Fawcett JW
    J Neurosci; 2010 Sep; 30(35):11654-69. PubMed ID: 20810886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ARF6 directs axon transport and traffic of integrins and regulates axon growth in adult DRG neurons.
    Eva R; Crisp S; Marland JR; Norman JC; Kanamarlapudi V; ffrench-Constant C; Fawcett JW
    J Neurosci; 2012 Jul; 32(30):10352-64. PubMed ID: 22836268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Virtuous Cycle of Axon Growth: Axonal Transport of Growth-Promoting Machinery as an Intrinsic Determinant of Axon Regeneration.
    Petrova V; Eva R
    Dev Neurobiol; 2018 Oct; 78(10):898-925. PubMed ID: 29989351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic Determinants of Axon Regeneration.
    Fawcett JW; Verhaagen J
    Dev Neurobiol; 2018 Oct; 78(10):890-897. PubMed ID: 30345655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Struggle to Make CNS Axons Regenerate: Why Has It Been so Difficult?
    Fawcett JW
    Neurochem Res; 2020 Jan; 45(1):144-158. PubMed ID: 31388931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell death and axon regeneration of Purkinje cells after axotomy: challenges of classical hypotheses of axon regeneration.
    Dusart I; Ghoumari A; Wehrle R; Morel MP; Bouslama-Oueghlani L; Camand E; Sotelo C
    Brain Res Brain Res Rev; 2005 Sep; 49(2):300-16. PubMed ID: 16111558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exclusion of integrins from CNS axons is regulated by Arf6 activation and the AIS.
    Franssen EH; Zhao RR; Koseki H; Kanamarlapudi V; Hoogenraad CC; Eva R; Fawcett JW
    J Neurosci; 2015 May; 35(21):8359-75. PubMed ID: 26019348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly of a new growth cone after axotomy: the precursor to axon regeneration.
    Bradke F; Fawcett JW; Spira ME
    Nat Rev Neurosci; 2012 Feb; 13(3):183-93. PubMed ID: 22334213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration.
    Verma P; Chierzi S; Codd AM; Campbell DS; Meyer RL; Holt CE; Fawcett JW
    J Neurosci; 2005 Jan; 25(2):331-42. PubMed ID: 15647476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cdk5 Regulation of the GRAB-Mediated Rab8-Rab11 Cascade in Axon Outgrowth.
    Furusawa K; Asada A; Urrutia P; Gonzalez-Billault C; Fukuda M; Hisanaga SI
    J Neurosci; 2017 Jan; 37(4):790-806. PubMed ID: 28123016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust regeneration of CNS axons through a track depleted of CNS glia.
    Moon LD; Brecknell JE; Franklin RJ; Dunnett SB; Fawcett JW
    Exp Neurol; 2000 Jan; 161(1):49-66. PubMed ID: 10683273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neu3 sialidase-mediated ganglioside conversion is necessary for axon regeneration and is blocked in CNS axons.
    Kappagantula S; Andrews MR; Cheah M; Abad-Rodriguez J; Dotti CG; Fawcett JW
    J Neurosci; 2014 Feb; 34(7):2477-92. PubMed ID: 24523539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prolonged target deprivation reduces the capacity of injured motoneurons to regenerate.
    Furey MJ; Midha R; Xu QG; Belkas J; Gordon T
    Neurosurgery; 2007 Apr; 60(4):723-32; discussion 732-3. PubMed ID: 17415210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism and role of the intra-axonal Calreticulin translation in response to axonal injury.
    Pacheco A; Merianda TT; Twiss JL; Gallo G
    Exp Neurol; 2020 Jan; 323():113072. PubMed ID: 31669485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Axonal regeneration from CNS neurons in the cerebellum and brainstem of adult rats: correlation with the patterns of expression and distribution of messenger RNAs for L1, CHL1, c-jun and growth-associated protein-43.
    Chaisuksunt V; Zhang Y; Anderson PN; Campbell G; Vaudano E; Schachner M; Lieberman AR
    Neuroscience; 2000; 100(1):87-108. PubMed ID: 10996461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axon resealing following transection takes longer in central axons than in peripheral axons: implications for axonal regeneration.
    Ahmed FA; Ingoglia NA; Sharma SC
    Exp Neurol; 2001 Feb; 167(2):451-5. PubMed ID: 11161634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axonal injury and peripheral nerve grafting in the thalamus and cerebellum of the adult rat: upregulation of c-jun and correlation with regenerative potential.
    Vaudano E; Campbell G; Hunt SP; Lieberman AR
    Eur J Neurosci; 1998 Aug; 10(8):2644-56. PubMed ID: 9767394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.