BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 28829783)

  • 1. USA National Phenology Network's volunteer-contributed observations yield predictive models of phenological transitions.
    Crimmins TM; Crimmins MA; Gerst KL; Rosemartin AH; Weltzin JF
    PLoS One; 2017; 12(8):e0182919. PubMed ID: 28829783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of large-scale citizen science data and long-term study data for phenology modeling.
    Taylor SD; Meiners JM; Riemer K; Orr MC; White EP
    Ecology; 2019 Feb; 100(2):e02568. PubMed ID: 30499218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Practice makes the expert: The importance of training volunteers in the generation of phenological data from photographs of biodiversity observation platforms.
    Salomé-Díaz J; Golubov J; Díaz-Segura O; Ramírez-Gutiérrez MC; Sifuentes de la Torre S; Koleff P; Quintero E; Martínez AJ
    PLoS One; 2023; 18(3):e0282750. PubMed ID: 36881607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating the onset of spring from a complex phenology database: trade-offs across geographic scales.
    Gerst KL; Kellermann JL; Enquist CA; Rosemartin AH; Denny EG
    Int J Biometeorol; 2016 Mar; 60(3):391-400. PubMed ID: 26260630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How well do the spring indices predict phenological activity across plant species?
    Gerst KL; Crimmins TM; Posthumus EE; Rosemartin AH; Schwartz MD
    Int J Biometeorol; 2020 May; 64(5):889-901. PubMed ID: 32107635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An empirical method to account for climatic adaptation in plant phenology models.
    Liang L; Wu J
    Int J Biometeorol; 2021 Nov; 65(11):1953-1966. PubMed ID: 34041598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Testing a growth efficiency hypothesis with continental-scale phenological variations of common and cloned plants.
    Liang L; Schwartz MD
    Int J Biometeorol; 2014 Oct; 58(8):1789-97. PubMed ID: 23775129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing accuracy in citizen science-based plant phenology monitoring.
    Fuccillo KK; Crimmins TM; de Rivera CE; Elder TS
    Int J Biometeorol; 2015 Jul; 59(7):917-26. PubMed ID: 25179528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale modeling of spring phenology across Deciduous Forests in the Eastern United States.
    Melaas EK; Friedl MA; Richardson AD
    Glob Chang Biol; 2016 Feb; 22(2):792-805. PubMed ID: 26456080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Standardized phenology monitoring methods to track plant and animal activity for science and resource management applications.
    Denny EG; Gerst KL; Miller-Rushing AJ; Tierney GL; Crimmins TM; Enquist CA; Guertin P; Rosemartin AH; Schwartz MD; Thomas KA; Weltzin JF
    Int J Biometeorol; 2014 May; 58(4):591-601. PubMed ID: 24458770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An observation-based progression modeling approach to spring and autumn deciduous tree phenology.
    Yu R; Schwartz MD; Donnelly A; Liang L
    Int J Biometeorol; 2016 Mar; 60(3):335-49. PubMed ID: 26219605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How training citizen scientists affects the accuracy and precision of phenological data.
    Feldman RE; Žemaitė I; Miller-Rushing AJ
    Int J Biometeorol; 2018 Aug; 62(8):1421-1435. PubMed ID: 29732472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term temporal changes in central European tree phenology (1946-2010) confirm the recent extension of growing seasons.
    Kolářová E; Nekovář J; Adamík P
    Int J Biometeorol; 2014 Oct; 58(8):1739-48. PubMed ID: 24389748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenological sequences: how early-season events define those that follow.
    Ettinger AK; Gee S; Wolkovich EM
    Am J Bot; 2018 Oct; 105(10):1771-1780. PubMed ID: 30324664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity of flowering and fruiting phenology of trees in a tropical deciduous forest in India.
    Singh KP; Kushwaha CP
    Ann Bot; 2006 Feb; 97(2):265-76. PubMed ID: 16357055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning modeling of plant phenology based on coupling satellite and gridded meteorological dataset.
    Czernecki B; Nowosad J; Jabłońska K
    Int J Biometeorol; 2018 Jul; 62(7):1297-1309. PubMed ID: 29644431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated data-intensive forecasting of plant phenology throughout the United States.
    Taylor SD; White EP
    Ecol Appl; 2020 Jan; 30(1):e02025. PubMed ID: 31630468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying phenological diversity: a framework based on Hill numbers theory.
    Sánchez-Ochoa D; González EJ; Arizmendi MDC; Koleff P; Martell-Dubois R; Meave JA; Pérez-Mendoza HA
    PeerJ; 2022; 10():e13412. PubMed ID: 35582616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of herbarium and citizen science phenology datasets for detecting response of flowering time to climate change in Denmark.
    Iwanycki Ahlstrand N; Primack RB; Tøttrup AP
    Int J Biometeorol; 2022 May; 66(5):849-862. PubMed ID: 35235036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geographic conditions impact the relationship between plant phenology and phylogeny.
    Shahzad K; Alatalo JM; Zhu M; Cao L; Hao Y; Dai J
    Sci Total Environ; 2024 Oct; 945():174083. PubMed ID: 38906301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.