BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 28830089)

  • 21. Uncovering a superfamily of nickel-dependent hydroxyacid racemases and epimerases.
    Desguin B; Urdiain-Arraiza J; Da Costa M; Fellner M; Hu J; Hausinger RP; Desmet T; Hols P; Soumillion P
    Sci Rep; 2020 Oct; 10(1):18123. PubMed ID: 33093595
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Racemization of l-lactic acid in pH-swing open fermentation of kitchen refuse by selective proliferation of Lactobacillus plantarum.
    Sakai K; Fujii N; Chukeatirote E
    J Biosci Bioeng; 2006 Sep; 102(3):227-32. PubMed ID: 17046538
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptional analysis of the molecular mechanism underlying the response of
    Jang HY; Kim MJ; Bae M; Hwang IM; Lee JH
    Heliyon; 2023 Jun; 9(6):e16520. PubMed ID: 37303574
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new high phenyl lactic acid-yielding Lactobacillus plantarum IMAU10124 and a comparative analysis of lactate dehydrogenase gene.
    Zhang X; Zhang S; Shi Y; Shen F; Wang H
    FEMS Microbiol Lett; 2014 Jul; 356(1):89-96. PubMed ID: 24861375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improvement of the fermentative activity of lactic acid bacteria starter culture by the addition of Mn²⁺.
    Cheng X; Dong Y; Su P; Xiao X
    Appl Biochem Biotechnol; 2014 Nov; 174(5):1752-60. PubMed ID: 25146195
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Channel-mediated lactic acid transport: a novel function for aquaglyceroporins in bacteria.
    Bienert GP; Desguin B; Chaumont F; Hols P
    Biochem J; 2013 Sep; 454(3):559-70. PubMed ID: 23799297
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unravelling the multiple effects of lactic acid stress on Lactobacillus plantarum by transcription profiling.
    Pieterse B; Leer RJ; Schuren FHJ; van der Werf MJ
    Microbiology (Reading); 2005 Dec; 151(Pt 12):3881-3894. PubMed ID: 16339934
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nickel pincer model of the active site of lactate racemase involves ligand participation in hydride transfer.
    Xu T; Wodrich MD; Scopelliti R; Corminboeuf C; Hu X
    Proc Natl Acad Sci U S A; 2017 Feb; 114(6):1242-1245. PubMed ID: 28115700
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Codominance of Lactobacillus plantarum and obligate heterofermentative lactic acid bacteria during sourdough fermentation.
    Ventimiglia G; Alfonzo A; Galluzzo P; Corona O; Francesca N; Caracappa S; Moschetti G; Settanni L
    Food Microbiol; 2015 Oct; 51():57-68. PubMed ID: 26187828
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional Models of the Nickel Pincer Nucleotide Cofactor of Lactate Racemase.
    Shi R; Wodrich MD; Pan HJ; Tirani FF; Hu X
    Angew Chem Int Ed Engl; 2019 Nov; 58(47):16869-16872. PubMed ID: 31535787
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced D-lactic acid production from renewable resources using engineered Lactobacillus plantarum.
    Zhang Y; Vadlani PV; Kumar A; Hardwidge PR; Govind R; Tanaka T; Kondo A
    Appl Microbiol Biotechnol; 2016 Jan; 100(1):279-88. PubMed ID: 26433970
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ENZYMOLOGY. It costs more than a nickel.
    Zamble D
    Science; 2015 Jul; 349(6243):35-6. PubMed ID: 26138967
    [No Abstract]   [Full Text] [Related]  

  • 33. D-lactic acid production from cellooligosaccharides and beta-glucan using L-LDH gene-deficient and endoglucanase-secreting Lactobacillus plantarum.
    Okano K; Zhang Q; Yoshida S; Tanaka T; Ogino C; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):643-50. PubMed ID: 19597813
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-step production of D-lactate from mixed sugars by growing and resting cells of metabolically engineered Lactobacillus plantarum.
    Tsuge Y; Kawaguchi H; Sasaki K; Tanaka T; Kondo A
    Appl Microbiol Biotechnol; 2014 Jun; 98(11):4911-8. PubMed ID: 24562327
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Proliferation Mechanism of Lactobacillus plantarum RB1 Stimulated by Stachyose.
    Pan Q; Zeng X; Pan D; Peng L; Wu Z; Sun Y; Wei Y
    Curr Microbiol; 2017 Jun; 74(6):732-738. PubMed ID: 28374137
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production of optically pure D-lactic acid from brown rice using metabolically engineered Lactobacillus plantarum.
    Okano K; Hama S; Kihara M; Noda H; Tanaka T; Kondo A
    Appl Microbiol Biotechnol; 2017 Mar; 101(5):1869-1875. PubMed ID: 27832309
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of bacteriocin-producing Lactobacillus plantarum strains on the intracellular pH of sessile and planktonic Listeria monocytogenes single cells.
    Nielsen DS; Cho GS; Hanak A; Huch M; Franz CM; Arneborg N
    Int J Food Microbiol; 2010 Jul; 141 Suppl 1():S53-9. PubMed ID: 20447709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A beta-glucosidase gene isolated from wine Lactobacillus plantarum is regulated by abiotic stresses.
    Spano G; Rinaldi A; Ugliano M; Moio L; Beneduce L; Massa S
    J Appl Microbiol; 2005; 98(4):855-61. PubMed ID: 15752331
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative and functional analysis of the rRNA-operons and their tRNA gene complement in different lactic acid bacteria.
    de Vries MC; Siezen RJ; Wijman JG; Zhao Y; Kleerebezem M; de Vos WM; Vaughan EE
    Syst Appl Microbiol; 2006 Jul; 29(5):358-67. PubMed ID: 16338113
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physio-chemical, microbiological properties of tempoyak and molecular characterisation of lactic acid bacteria isolated from tempoyak.
    Chuah LO; Shamila-Syuhada AK; Liong MT; Rosma A; Thong KL; Rusul G
    Food Microbiol; 2016 Sep; 58():95-104. PubMed ID: 27217364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.