These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28830155)

  • 1. Generalized Einstein relation for the mutual diffusion coefficient of a binary fluid mixture.
    Felderhof BU
    J Chem Phys; 2017 Aug; 147(7):074902. PubMed ID: 28830155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Normal versus anomalous self-diffusion in two-dimensional fluids: memory function approach and generalized asymptotic Einstein relation.
    Shin HK; Choi B; Talkner P; Lee EK
    J Chem Phys; 2014 Dec; 141(21):214112. PubMed ID: 25481134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vanishing mean volume velocity in isothermal isobaric diffusion of a binary fluid mixture.
    Felderhof BU
    J Chem Phys; 2018 Mar; 148(11):114902. PubMed ID: 29566512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion of a sphere in a dilute solution of polymer coils.
    Krüger M; Rauscher M
    J Chem Phys; 2009 Sep; 131(9):094902. PubMed ID: 19739868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward a nonequilibrium Stokes-Einstein relation via active microrheology of hydrodynamically interacting colloidal dispersions.
    Chu HCW; Zia RN
    J Colloid Interface Sci; 2019 Mar; 539():388-399. PubMed ID: 30597285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. I. Overdamped models.
    Chavanis PH; Sire C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066103. PubMed ID: 16906910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Stokes-Einstein relation at moderate Schmidt number.
    Balboa Usabiaga F; Xie X; Delgado-Buscalioni R; Donev A
    J Chem Phys; 2013 Dec; 139(21):214113. PubMed ID: 24320370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion Coefficient of a Brownian Particle in Equilibrium and Nonequilibrium: Einstein Model and Beyond.
    Spiechowicz J; Marchenko IG; Hänggi P; Łuczka J
    Entropy (Basel); 2022 Dec; 25(1):. PubMed ID: 36673183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stokes drag on a sphere in a nematic liquid crystal.
    Loudet JC; Hanusse P; Poulin P
    Science; 2004 Nov; 306(5701):1525. PubMed ID: 15567855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mobility matrix of a spherical particle translating and rotating in a viscous fluid confined in a spherical cell, and the rate of escape from the cell.
    Felderhof BU; Sellier A
    J Chem Phys; 2012 Feb; 136(5):054703. PubMed ID: 22320755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testing the Stokes-Einstein relation with the hard-sphere fluid model.
    Zhao H; Zhao H
    Phys Rev E; 2021 Mar; 103(3):L030103. PubMed ID: 33862740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brownian motion in inhomogeneous suspensions.
    Yang M; Ripoll M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062110. PubMed ID: 23848630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fokker-Planck equation for Boltzmann-type and active particles: transfer probability approach.
    Trigger SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046403. PubMed ID: 12786497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalized mapping of multi-body dissipative particle dynamics onto fluid compressibility and the Flory-Huggins theory.
    Jamali S; Boromand A; Khani S; Wagner J; Yamanoi M; Maia J
    J Chem Phys; 2015 Apr; 142(16):164902. PubMed ID: 25933786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Explicit expressions of self-diffusion coefficient, shear viscosity, and the Stokes-Einstein relation for binary mixtures of Lennard-Jones liquids.
    Ohtori N; Ishii Y
    J Chem Phys; 2015 Oct; 143(16):164514. PubMed ID: 26520534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The concentration dependence of the hemoglobin mutual diffusion coefficient.
    Alpert SS; Banks G
    Biophys Chem; 1976 May; 4(3):287-96. PubMed ID: 949530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluctuation theory of single-file diffusion.
    Felderhof BU
    J Chem Phys; 2009 Aug; 131(6):064504. PubMed ID: 19691394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized Einstein relation in tilted periodic potential: a semiclassical approach.
    Shit A; Chattopadhyay S; Banik SK; Chaudhuri JR
    J Phys Chem B; 2010 Jun; 114(23):7854-63. PubMed ID: 20481540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular insights into the boundary conditions in the Stokes-Einstein relation.
    Ishii Y; Ohtori N
    Phys Rev E; 2016 May; 93(5):050104. PubMed ID: 27300813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective temperatures and the breakdown of the Stokes-Einstein relation for particle suspensions.
    Mendoza CI; Santamaría-Holek I; Pérez-Madrid A
    J Chem Phys; 2015 Sep; 143(10):104506. PubMed ID: 26374049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.