These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 28830167)

  • 1. Controlling resonance energy transfer in nanostructure emitters by positioning near a mirror.
    Weeraddana D; Premaratne M; Gunapala SD; Andrews DL
    J Chem Phys; 2017 Aug; 147(7):074117. PubMed ID: 28830167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance Energy Transfer in Upconversion Nanoplatforms for Selective Biodetection.
    Su Q; Feng W; Yang D; Li F
    Acc Chem Res; 2017 Jan; 50(1):32-40. PubMed ID: 27983801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond Förster resonance energy transfer in biological and nanoscale systems.
    Beljonne D; Curutchet C; Scholes GD; Silbey RJ
    J Phys Chem B; 2009 May; 113(19):6583-99. PubMed ID: 19331333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon-coupled resonance energy transfer: A real-time electrodynamics approach.
    Ding W; Hsu LY; Schatz GC
    J Chem Phys; 2017 Feb; 146(6):064109. PubMed ID: 28201896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entangled Photon Resonance Energy Transfer in Arbitrary Media.
    Avanaki KN; Schatz GC
    J Phys Chem Lett; 2019 Jun; 10(11):3181-3188. PubMed ID: 31117677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmon-Coupled Resonance Energy Transfer.
    Hsu LY; Ding W; Schatz GC
    J Phys Chem Lett; 2017 May; 8(10):2357-2367. PubMed ID: 28467705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Quantum Electrodynamics Description of Quantum Coherence and Damping in Condensed-Phase Energy Transfer.
    Ford JS; Salam A; Jones GA
    J Phys Chem Lett; 2019 Sep; 10(18):5654-5661. PubMed ID: 31483664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanophotonic control of the Förster resonance energy transfer efficiency.
    Blum C; Zijlstra N; Lagendijk A; Wubs M; Mosk AP; Subramaniam V; Vos WL
    Phys Rev Lett; 2012 Nov; 109(20):203601. PubMed ID: 23215487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unified treatment of coherent and incoherent electronic energy transfer dynamics using classical electrodynamics.
    Zimanyi EN; Silbey RJ
    J Chem Phys; 2010 Oct; 133(14):144107. PubMed ID: 20949987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optically controlled resonance energy transfer: mechanism and configuration for all-optical switching.
    Bradshaw DS; Andrews DL
    J Chem Phys; 2008 Apr; 128(14):144506. PubMed ID: 18412458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative Energy Transfer Controls the Spontaneous Emission Rate Beyond Field Enhancement Limits.
    ElKabbash M; Miele E; Fumani AK; Wolf MS; Bozzola A; Haber E; Shahbazyan TV; Berezovsky J; De Angelis F; Strangi G
    Phys Rev Lett; 2019 May; 122(20):203901. PubMed ID: 31172774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A theoretical investigation of the influence of gold nanosphere size on the decay and energy transfer rates and efficiencies of quantum emitters.
    Marocico CA; Zhang X; Bradley AL
    J Chem Phys; 2016 Jan; 144(2):024108. PubMed ID: 26772555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microcavities: tailoring the optical properties of single quantum emitters.
    Bär S; Chizhik A; Gutbrod R; Schleifenbaum F; Chizhik A; Meixner AJ
    Anal Bioanal Chem; 2010 Jan; 396(1):3-14. PubMed ID: 19908031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intramolecular electronic excitation energy transfer in donor/acceptor dyads studied by time and frequency resolved single molecule spectroscopy.
    Hinze G; Métivier R; Nolde F; Müllen K; Basché T
    J Chem Phys; 2008 Mar; 128(12):124516. PubMed ID: 18376952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Förster resonance energy transfer in a nanoscopic system on a dielectric interface.
    Batabyal S; Mondol T; Das K; Pal SK
    Nanotechnology; 2012 Dec; 23(49):495402. PubMed ID: 23150145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristic Distance of Resonance Energy Transfer Coupled with Surface Plasmon Polaritons.
    Wu JS; Lin YC; Sheu YL; Hsu LY
    J Phys Chem Lett; 2018 Dec; 9(24):7032-7039. PubMed ID: 30489084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the microscopic structural organization of neat ionic liquids (ILs) and ionic liquid-based gels through resonance energy transfer (RET) studies.
    Majhi D; Sarkar M
    Phys Chem Chem Phys; 2017 Aug; 19(34):23194-23203. PubMed ID: 28825430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optically switched energy transfer: twin-beam off-resonance control.
    Andrews DL
    Phys Rev Lett; 2007 Jul; 99(2):023601. PubMed ID: 17678222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Comprehensive Approach to Exciton Delocalization and Energy Transfer.
    Giavazzi D; Saseendran S; Di Maiolo F; Painelli A
    J Chem Theory Comput; 2022 Dec; 19(2):436-47. PubMed ID: 36563008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Achieving effective terminal exciton delivery in quantum dot antenna-sensitized multistep DNA photonic wires.
    Spillmann CM; Ancona MG; Buckhout-White S; Algar WR; Stewart MH; Susumu K; Huston AL; Goldman ER; Medintz IL
    ACS Nano; 2013 Aug; 7(8):7101-18. PubMed ID: 23844838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.