These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28830176)

  • 1. Lattice thermal expansion and anisotropic displacements in urea, bromomalonic aldehyde, pentachloropyridine, and naphthalene.
    George J; Wang R; Englert U; Dronskowski R
    J Chem Phys; 2017 Aug; 147(7):074112. PubMed ID: 28830176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lattice thermal expansion and anisotropic displacements in šœ¶-sulfur from diffraction experiments and first-principles theory.
    George J; Deringer VL; Wang A; MĆ¼ller P; Englert U; Dronskowski R
    J Chem Phys; 2016 Dec; 145(23):234512. PubMed ID: 28010090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-frequency lattice vibrations from atomic displacement parameters of Ī±-FOX-7, a high energy density material.
    Aree T; McMonagle CJ; Michalchuk AAL; Chernyshov D
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2022 Jun; 78(Pt 3 Pt 1):376-384. PubMed ID: 35695111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal properties of molecular crystals through dispersion-corrected quasi-harmonic ab initio calculations: the case of urea.
    Erba A; Maul J; Civalleri B
    Chem Commun (Camb); 2016 Jan; 52(9):1820-3. PubMed ID: 26670006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can we trust the experiment? Anisotropic displacement parameters in 1-(halomethyl)-3-nitrobenzene (halogen = Cl or Br).
    Mroz D; Wang R; Englert U; Dronskowski R
    Acta Crystallogr C Struct Chem; 2020 Jun; 76(Pt 6):591-597. PubMed ID: 32499457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic fluctuations of amino acids in protein structures: insights from X-ray crystallography and elastic network models.
    Eyal E; Chennubhotla C; Yang LW; Bahar I
    Bioinformatics; 2007 Jul; 23(13):i175-84. PubMed ID: 17646294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal Gradient Approach for the Quasi-harmonic Approximation and Its Application to Improved Treatment of Anisotropic Expansion.
    Abraham NS; Shirts MR
    J Chem Theory Comput; 2018 Nov; 14(11):5904-5919. PubMed ID: 30281302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On QM/MM and MO/MO cluster calculations of all-atom anisotropic displacement parameters for molecules in crystal structures.
    Dittrich B; Pfitzenreuter S; HĆ¼bschle CB
    Acta Crystallogr A; 2012 Jan; 68(Pt 1):110-6. PubMed ID: 22186287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic quantum crystallography: lattice-dynamical models refined against diffraction data. II. Applications to L-alanine, naphthalene and xylitol.
    Hoser AA; Madsen AƘ
    Acta Crystallogr A Found Adv; 2017 Mar; 73(Pt 2):102-114. PubMed ID: 28248659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics and thermodynamics of crystalline polymorphs: Ī±-glycine, analysis of variable-temperature atomic displacement parameters.
    Aree T; BĆ¼rgi HB; Capelli SC
    J Phys Chem A; 2012 Aug; 116(30):8092-9. PubMed ID: 22746958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On how differently the quasi-harmonic approximation works for two isostructural crystals: thermal properties of periclase and lime.
    Erba A; Shahrokhi M; Moradian R; Dovesi R
    J Chem Phys; 2015 Jan; 142(4):044114. PubMed ID: 25637976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal properties of energetic materials from quasi-harmonic first-principles calculations.
    Fan J; Su Y; Zheng Z; Zhao J
    J Phys Condens Matter; 2021 May; 33(27):. PubMed ID: 33906164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the Anisotropic Thermal Expansion Mechanism of Ag
    Wu J; Liu H; He Z; Luo H; Chen B; Liu X; Huang W
    Inorg Chem; 2021 Aug; 60(15):11098-11109. PubMed ID: 34269566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lattice dynamics and thermophysical properties of h.c.p. Os and Ru from the quasi-harmonic approximation.
    Palumbo M; Dal Corso A
    J Phys Condens Matter; 2017 Oct; 29(39):395401. PubMed ID: 28678025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How to get maximum structure information from anisotropic displacement parameters obtained by three-dimensional electron diffraction: an experimental study on metal-organic frameworks.
    Samperisi L; Zou X; Huang Z
    IUCrJ; 2022 Jul; 9(Pt 4):480-491. PubMed ID: 35844475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic Properties of Molecular Crystals Calculated within the Quasi-Harmonic Approximation.
    Červinka C; Fulem M; Stoffel RP; Dronskowski R
    J Phys Chem A; 2016 Mar; 120(12):2022-34. PubMed ID: 26959684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anisotropic thermal motion in transition-metal carbonyls from experiments and ab initio theory.
    Deringer VL; Wang A; George J; Dronskowski R; Englert U
    Dalton Trans; 2016 Sep; 45(35):13680-5. PubMed ID: 27513896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Negative thermal expansion of Cu
    Linnera J; Erba A; Karttunen AJ
    J Chem Phys; 2019 Nov; 151(18):184109. PubMed ID: 31731874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular motion in crystalline naphthalene: analysis of multi-temperature X-ray and neutron diffraction data.
    Capelli SC; Albinati A; Mason SA; Willis BT
    J Phys Chem A; 2006 Oct; 110(41):11695-703. PubMed ID: 17034163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How important is thermal expansion for predicting molecular crystal structures and thermochemistry at finite temperatures?
    Heit YN; Beran GJ
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2016 Aug; 72(Pt 4):514-29. PubMed ID: 27484373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.