BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 28830346)

  • 21. Comparative transcriptome analysis of male and female flowers in Spinacia oleracea L.
    Li N; Meng Z; Tao M; Wang Y; Zhang Y; Li S; Gao W; Deng C
    BMC Genomics; 2020 Dec; 21(1):850. PubMed ID: 33256615
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Death of female flower microsporocytes progresses independently of meiosis-like process and can be accelerated by specific transcripts in Asparagus officinalis.
    Ide M; Masuda K; Tsugama D; Fujino K
    Sci Rep; 2019 Feb; 9(1):2703. PubMed ID: 30804374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptome Profiling of Two Asparagus Bean (Vigna unguiculata subsp. sesquipedalis) Cultivars Differing in Chilling Tolerance under Cold Stress.
    Tan H; Huang H; Tie M; Tang Y; Lai Y; Li H
    PLoS One; 2016; 11(3):e0151105. PubMed ID: 26954786
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RNA-Seq-based transcriptome analysis of dormant flower buds of Chinese cherry (Prunus pseudocerasus).
    Zhu Y; Li Y; Xin D; Chen W; Shao X; Wang Y; Guo W
    Gene; 2015 Jan; 555(2):362-76. PubMed ID: 25447903
    [TBL] [Abstract][Full Text] [Related]  

  • 25. De novo transcriptome assembly and comparative analysis between male and benzyladenine-induced female inflorescence buds of Plukenetia volubilis.
    Fu Q; Niu L; Chen MS; Tao YB; Wang X; He H; Pan BZ; Xu ZF
    J Plant Physiol; 2018 Feb; 221():107-118. PubMed ID: 29275214
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Screening and identification of miRNAs related to sexual differentiation of strobili in Ginkgo biloba by integration analysis of small RNA, RNA, and degradome sequencing.
    Liu XM; Cheng SY; Ye JB; Chen ZX; Liao YL; Zhang WW; Kim SU; Xu F
    BMC Plant Biol; 2020 Aug; 20(1):387. PubMed ID: 32842951
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative Transcriptome Analysis between Fertile and CMS Flower Buds in Wucai (Brassica campestris L.).
    Chen G; Ye X; Zhang S; Zhu S; Yuan L; Hou J; Wang C
    BMC Genomics; 2018 Dec; 19(1):908. PubMed ID: 30541424
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrated analysis of transcriptomics and metabolomics of garden asparagus (Asparagus officinalis L.) under drought stress.
    Zhang X; Han C; Wang Y; Liu T; Liang Y; Cao Y
    BMC Plant Biol; 2024 Jun; 24(1):563. PubMed ID: 38879466
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromosome-scale haplotype-phased genome assemblies of the male and female lines of wild asparagus (Asparagus kiusianus), a dioecious plant species.
    Shirasawa K; Ueta S; Murakami K; Abdelrahman M; Kanno A; Isobe S
    DNA Res; 2022 Jan; 29(1):. PubMed ID: 35040911
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Whole-Transcriptome Analysis of Differentially Expressed Genes in the Vegetative Buds, Floral Buds and Buds of Chrysanthemum morifolium.
    Liu H; Sun M; Du D; Pan H; Cheng T; Wang J; Zhang Q
    PLoS One; 2015; 10(5):e0128009. PubMed ID: 26009891
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcriptome Analysis of Flower Sex Differentiation in Jatropha curcas L. Using RNA Sequencing.
    Xu G; Huang J; Yang Y; Yao YA
    PLoS One; 2016; 11(2):e0145613. PubMed ID: 26848843
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Whole-transcriptome analysis of differentially expressed genes in the ray florets and disc florets of Chrysanthemum morifolium.
    Liu H; Sun M; Du D; Pan H; Cheng T; Wang J; Zhang Q; Gao Y
    BMC Genomics; 2016 May; 17():398. PubMed ID: 27225275
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptome analysis of the differentially expressed genes in the male and female shrub willows (Salix suchowensis).
    Liu J; Yin T; Ye N; Chen Y; Yin T; Liu M; Hassani D
    PLoS One; 2013; 8(4):e60181. PubMed ID: 23560075
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative transcriptome analysis of dioecious, unisexual floral development in Ribes diacanthum pall.
    Zhou B; Wang J; Lou H; Wang H; Xu Q
    Gene; 2019 May; 699():43-53. PubMed ID: 30858139
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The garden asparagus (
    Sheng W; Deng J; Wang C; Kuang Q
    Front Plant Sci; 2023; 14():1140043. PubMed ID: 37051082
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of transposable elements in the genome of Asparagus officinalis from high coverage sequence data.
    Li SF; Gao WJ; Zhao XP; Dong TY; Deng CL; Lu LD
    PLoS One; 2014; 9(5):e97189. PubMed ID: 24810432
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-wide identification and validation of simple sequence repeats (SSRs) from Asparagus officinalis.
    Li S; Zhang G; Li X; Wang L; Yuan J; Deng C; Gao W
    Mol Cell Probes; 2016 Jun; 30(3):153-60. PubMed ID: 26987412
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative transcriptome profiling of the fertile and sterile flower buds of a dominant genic male sterile line in sesame (Sesamum indicum L.).
    Liu H; Tan M; Yu H; Li L; Zhou F; Yang M; Zhou T; Zhao Y
    BMC Plant Biol; 2016 Nov; 16(1):250. PubMed ID: 27832742
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular phylogeny of the genus Asparagus (Asparagaceae) explains interspecific crossability between the garden asparagus (A. officinalis) and other Asparagus species.
    Kubota S; Konno I; Kanno A
    Theor Appl Genet; 2012 Feb; 124(2):345-54. PubMed ID: 21947345
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physiological and transcriptome analysis of changes in endogenous hormone and sugar content during the formation of tender asparagus stems.
    He M; Chen P; Li M; Lei F; Lu W; Jiang C; Liu J; Li Y; Xiao J; Zheng Y
    BMC Plant Biol; 2024 Jun; 24(1):581. PubMed ID: 38898382
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.