These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Proteomic and metabolomic analyses provide insight into production of volatile and non-volatile flavor components in mandarin hybrid fruit. Yu Q; Plotto A; Baldwin EA; Bai J; Huang M; Yu Y; Dhaliwal HS; Gmitter FG BMC Plant Biol; 2015 Mar; 15():76. PubMed ID: 25848837 [TBL] [Abstract][Full Text] [Related]
4. Comparative analysis of juice volatiles in selected mandarins, mandarin relatives and other citrus genotypes. Yu Y; Bai J; Chen C; Plotto A; Baldwin EA; Gmitter FG J Sci Food Agric; 2018 Feb; 98(3):1124-1131. PubMed ID: 28731231 [TBL] [Abstract][Full Text] [Related]
5. Genetic architecture of berry aroma compounds in a QTL (quantitative trait loci) mapping population of interspecific hybrid grapes (Vitis labruscana × Vitis vinifera). Koyama K; Kono A; Ban Y; Bahena-Garrido SM; Ohama T; Iwashita K; Fukuda H; Goto-Yamamoto N BMC Plant Biol; 2022 Sep; 22(1):458. PubMed ID: 36151514 [TBL] [Abstract][Full Text] [Related]
6. Citrus fruit flavor and aroma biosynthesis: isolation, functional characterization, and developmental regulation of Cstps1, a key gene in the production of the sesquiterpene aroma compound valencene. Sharon-Asa L; Shalit M; Frydman A; Bar E; Holland D; Or E; Lavi U; Lewinsohn E; Eyal Y Plant J; 2003 Dec; 36(5):664-74. PubMed ID: 14617067 [TBL] [Abstract][Full Text] [Related]
7. Distribution of aroma volatile compounds in tangerine hybrids and proposed inheritance. Miyazaki T; Plotto A; Goodner K; Gmitter FG J Sci Food Agric; 2011 Feb; 91(3):449-60. PubMed ID: 21218478 [TBL] [Abstract][Full Text] [Related]
8. QTL mapping for fruit quality in Citrus using DArTseq markers. Curtolo M; Cristofani-Yaly M; Gazaffi R; Takita MA; Figueira A; Machado MA BMC Genomics; 2017 Apr; 18(1):289. PubMed ID: 28403819 [TBL] [Abstract][Full Text] [Related]
9. Deficiency of valencene in mandarin hybrids is associated with a deletion in the promoter region of the valencene synthase gene. Yu Q; Huang M; Jia H; Yu Y; Plotto A; Baldwin EA; Bai J; Wang N; Gmitter FG BMC Plant Biol; 2019 Mar; 19(1):101. PubMed ID: 30866831 [TBL] [Abstract][Full Text] [Related]
10. Differentiation between Flavors of Sweet Orange (Citrus sinensis) and Mandarin (Citrus reticulata). Feng S; Suh JH; Gmitter FG; Wang Y J Agric Food Chem; 2018 Jan; 66(1):203-211. PubMed ID: 29237265 [TBL] [Abstract][Full Text] [Related]
11. Identification, introgression, and validation of fruit volatile QTLs from a red-fruited wild tomato species. Rambla JL; Medina A; Fernández-Del-Carmen A; Barrantes W; Grandillo S; Cammareri M; López-Casado G; Rodrigo G; Alonso A; García-Martínez S; Primo J; Ruiz JJ; Fernández-Muñoz R; Monforte AJ; Granell A J Exp Bot; 2017 Jan; 68(3):429-442. PubMed ID: 28040800 [TBL] [Abstract][Full Text] [Related]
12. Effect of fruit maturity on volatiles and sensory descriptors of four mandarin hybrids. Hijaz F; Gmitter FG; Bai J; Baldwin E; Biotteau A; Leclair C; McCollum TG; Plotto A J Food Sci; 2020 May; 85(5):1548-1564. PubMed ID: 32249935 [TBL] [Abstract][Full Text] [Related]
13. The peach volatilome modularity is reflected at the genetic and environmental response levels in a QTL mapping population. Sánchez G; Martínez J; Romeu J; García J; Monforte AJ; Badenes ML; Granell A BMC Plant Biol; 2014 May; 14():137. PubMed ID: 24885290 [TBL] [Abstract][Full Text] [Related]
14. Fruit volatile profiles of two citrus hybrids are dramatically different from those of their parents. Rambla JL; González-Mas MC; Pons C; Bernet GP; Asins MJ; Granell A J Agric Food Chem; 2014 Nov; 62(46):11312-22. PubMed ID: 25335473 [TBL] [Abstract][Full Text] [Related]
15. Discrimination and Identification of Aroma Profiles and Characterized Odorants in Citrus Blend Black Tea with Different Citrus Species. Wang J; Zhu Y; Shi J; Yan H; Wang M; Ma W; Zhang Y; Peng Q; Chen Y; Lin Z Molecules; 2020 Sep; 25(18):. PubMed ID: 32937894 [TBL] [Abstract][Full Text] [Related]
16. Diversity among mandarin varieties and natural sub-groups in aroma volatiles compositions. Goldenberg L; Yaniv Y; Doron-Faigenboim A; Carmi N; Porat R J Sci Food Agric; 2016 Jan; 96(1):57-65. PubMed ID: 25824867 [TBL] [Abstract][Full Text] [Related]
17. The genetic and molecular origin of natural variation for the fragrance trait in an elite Malaysian aromatic rice through quantitative trait loci mapping using SSR and gene-based markers. Golestan Hashemi FS; Rafii MY; Ismail MR; Mohamed MT; Rahim HA; Latif MA; Aslani F Gene; 2015 Jan; 555(2):101-7. PubMed ID: 25445269 [TBL] [Abstract][Full Text] [Related]
18. QTL mapping of volatile compound production in Saccharomyces cerevisiae during alcoholic fermentation. Eder M; Sanchez I; Brice C; Camarasa C; Legras JL; Dequin S BMC Genomics; 2018 Mar; 19(1):166. PubMed ID: 29490607 [TBL] [Abstract][Full Text] [Related]
19. Volatile constituents of wild citrus Mangshanyegan (Citrus nobilis Lauriro) peel oil. Liu C; Cheng Y; Zhang H; Deng X; Chen F; Xu J J Agric Food Chem; 2012 Mar; 60(10):2617-28. PubMed ID: 22352344 [TBL] [Abstract][Full Text] [Related]
20. Genetic analysis of strawberry fruit aroma and identification of O-methyltransferase FaOMT as the locus controlling natural variation in mesifurane content. Zorrilla-Fontanesi Y; Rambla JL; Cabeza A; Medina JJ; Sánchez-Sevilla JF; Valpuesta V; Botella MA; Granell A; Amaya I Plant Physiol; 2012 Jun; 159(2):851-70. PubMed ID: 22474217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]