These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 28830591)

  • 1. Consistent trilayer biomechanical modeling of aortic valve leaflet tissue.
    Bakhaty AA; Govindjee S; Mofrad MRK
    J Biomech; 2017 Aug; 61():1-10. PubMed ID: 28830591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiphysics simulation of the effect of leaflet thickness inhomogeneity and material anisotropy on the stress-strain distribution on the aortic valve.
    Joda A; Jin Z; Haverich A; Summers J; Korossis S
    J Biomech; 2016 Aug; 49(12):2502-12. PubMed ID: 26961798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the biaxial mechanical properties of the layers of the aortic valve leaflet.
    Stella JA; Sacks MS
    J Biomech Eng; 2007 Oct; 129(5):757-66. PubMed ID: 17887902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subject-specific multiscale modeling of aortic valve biomechanics.
    Rossini G; Caimi A; Redaelli A; Votta E
    Biomech Model Mechanobiol; 2021 Jun; 20(3):1031-1046. PubMed ID: 33792805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow-Structure Interaction Simulations of the Aortic Heart Valve at Physiologic Conditions: The Role of Tissue Constitutive Model.
    Gilmanov A; Stolarski H; Sotiropoulos F
    J Biomech Eng; 2018 Apr; 140(4):. PubMed ID: 29305610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp: Part II--A structural constitutive model.
    Billiar KL; Sacks MS
    J Biomech Eng; 2000 Aug; 122(4):327-35. PubMed ID: 11036555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational multi-scale approach to investigate mechanically-induced changes in tricuspid valve anterior leaflet microstructure.
    Thomas VS; Lai V; Amini R
    Acta Biomater; 2019 Aug; 94():524-535. PubMed ID: 31229629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element model of mechanically induced collagen fiber synthesis and degradation in the aortic valve.
    Boerboom RA; Driessen NJ; Bouten CV; Huyghe JM; Baaijens FP
    Ann Biomed Eng; 2003 Oct; 31(9):1040-53. PubMed ID: 14582607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aortic valve leaflet mechanical properties facilitate diastolic valve function.
    Koch TM; Reddy BD; Zilla P; Franz T
    Comput Methods Biomech Biomed Engin; 2010; 13(2):225-34. PubMed ID: 19657802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method.
    Mohammadi H; Bahramian F; Wan W
    Med Eng Phys; 2009 Nov; 31(9):1110-7. PubMed ID: 19773193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic time-dependant behaviour of the aortic valve.
    Anssari-Benam A; Bader DL; Screen HR
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1603-10. PubMed ID: 22098862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A structural constitutive model for collagenous cardiovascular tissues incorporating the angular fiber distribution.
    Driessen NJ; Bouten CV; Baaijens FP
    J Biomech Eng; 2005 Jun; 127(3):494-503. PubMed ID: 16060356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging analysis of collagen fiber networks in cusps of porcine aortic valves: effect of their local distribution and alignment on valve functionality.
    Mega M; Marom G; Halevi R; Hamdan A; Bluestein D; Haj-Ali R
    Comput Methods Biomech Biomed Engin; 2016; 19(9):1002-8. PubMed ID: 26406926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluid-Structure Interaction Study of Transcatheter Aortic Valve Dynamics Using Smoothed Particle Hydrodynamics.
    Mao W; Li K; Sun W
    Cardiovasc Eng Technol; 2016 Dec; 7(4):374-388. PubMed ID: 27844463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biaxial mechanical behavior of bovine saphenous venous valve leaflets.
    Lu J; Huang HS
    J Mech Behav Biomed Mater; 2018 Jan; 77():594-599. PubMed ID: 29096125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of elastin in aortic valve mechanics.
    Vesely I
    J Biomech; 1998 Feb; 31(2):115-23. PubMed ID: 9593204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-situ deformation of the aortic valve interstitial cell nucleus under diastolic loading.
    Huang HY; Liao J; Sacks MS
    J Biomech Eng; 2007 Dec; 129(6):880-89. PubMed ID: 18067392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of the influence of the compliant aortic root on aortic valve mechanics by means of a geometrical model.
    Redaelli A; Di Martino E; Gamba A; Procopio AM; Fumero R
    Med Eng Phys; 1997 Dec; 19(8):696-710. PubMed ID: 9450254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An inverse modeling approach for semilunar heart valve leaflet mechanics: exploitation of tissue structure.
    Aggarwal A; Sacks MS
    Biomech Model Mechanobiol; 2016 Aug; 15(4):909-32. PubMed ID: 26449480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical Properties of Fiber Bundle and Membrane Mesostructures of the Porcine Aortic Valve.
    Rock CA; Doehring TC
    J Heart Valve Dis; 2016 Jan; 25(1):82-89. PubMed ID: 27989090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.