These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28830591)

  • 21. A hyperelastic constitutive law for aortic valve tissue.
    May-Newman K; Lam C; Yin FC
    J Biomech Eng; 2009 Aug; 131(8):081009. PubMed ID: 19604021
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanics of the pulmonary valve in the aortic position.
    Soares AL; van Geemen D; van den Bogaerdt AJ; Oomens CW; Bouten CV; Baaijens FP
    J Mech Behav Biomed Mater; 2014 Jan; 29():557-67. PubMed ID: 24035437
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural analysis of the natural aortic valve in dynamics: from unpressurized to physiologically loaded.
    Labrosse MR; Lobo K; Beller CJ
    J Biomech; 2010 Jul; 43(10):1916-22. PubMed ID: 20378117
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Discussion of "Aortic valve mechanics Part II: A stress analysis of the porcine aortic valve leaflets in diastole" Biomat. Med. Dev. 6(3), 225-244 (1978).
    Gould PL; Rossow MP
    Biomater Med Devices Artif Organs; 1979; 7(3):435-42. PubMed ID: 476259
    [No Abstract]   [Full Text] [Related]  

  • 25. A functionally graded material model for the transmural stress distribution of the aortic valve leaflet.
    Rego BV; Sacks MS
    J Biomech; 2017 Mar; 54():88-95. PubMed ID: 28256242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Material modeling of cardiac valve tissue: Experiments, constitutive analysis and numerical investigation.
    Heyden S; Nagler A; Bertoglio C; Biehler J; Gee MW; Wall WA; Ortiz M
    J Biomech; 2015 Dec; 48(16):4287-96. PubMed ID: 26592436
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cyclic pressure and angiotensin II influence the biomechanical properties of aortic valves.
    Myles V; Liao J; Warnock JN
    J Biomech Eng; 2014 Jan; 136(1):011011. PubMed ID: 24240552
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stress related collagen ultrastructure in human aortic valves--implications for tissue engineering.
    Balguid A; Driessen NJ; Mol A; Schmitz JP; Verheyen F; Bouten CV; Baaijens FP
    J Biomech; 2008 Aug; 41(12):2612-7. PubMed ID: 18701107
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Remodelling of material structure in aortic valve leaflet.
    Patralski K; Konderla P
    Acta Bioeng Biomech; 2015; 17(2):63-72. PubMed ID: 26399228
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An integrated computational approach for aortic mechanics including geometric, histological and chemico-physical data.
    Bianchi D; Marino M; Vairo G
    J Biomech; 2016 Aug; 49(12):2331-40. PubMed ID: 26916511
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Constitutive modeling of ascending thoracic aortic aneurysms using microstructural parameters.
    Pasta S; Phillippi JA; Tsamis A; D'Amore A; Raffa GM; Pilato M; Scardulla C; Watkins SC; Wagner WR; Gleason TG; Vorp DA
    Med Eng Phys; 2016 Feb; 38(2):121-30. PubMed ID: 26669606
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regional structure-function relationships in mouse aortic valve tissue.
    Krishnamurthy VK; Guilak F; Narmoneva DA; Hinton RB
    J Biomech; 2011 Jan; 44(1):77-83. PubMed ID: 20863504
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real-time strain mapping via biaxial stretching in heart valve tissues.
    Huang HY; Huang S
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6653-6. PubMed ID: 23367455
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel technique for quantifying mouse heart valve leaflet stiffness with atomic force microscopy.
    Sewell-Loftin MK; Brown CB; Baldwin HS; Merryman WD
    J Heart Valve Dis; 2012 Jul; 21(4):513-20. PubMed ID: 22953681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A coupled fluid-structure finite element model of the aortic valve and root.
    Nicosia MA; Cochran RP; Einstein DR; Rutland CJ; Kunzelman KS
    J Heart Valve Dis; 2003 Nov; 12(6):781-9. PubMed ID: 14658821
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An anisotropic multiphysics damage model with application to annulus fibrosus.
    Gao X; Zhu Q; Gu W
    J Biomech; 2017 Aug; 61():88-93. PubMed ID: 28764957
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Computational Tool for the Microstructure Optimization of a Polymeric Heart Valve Prosthesis.
    Serrani M; Brubert J; Stasiak J; De Gaetano F; Zaffora A; Costantino ML; Moggridge GD
    J Biomech Eng; 2016 Jun; 138(6):061001. PubMed ID: 27018454
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tissue engineering of cardiac valve prostheses II: biomechanical characterization of decellularized porcine aortic heart valves.
    Korossis SA; Booth C; Wilcox HE; Watterson KG; Kearney JN; Fisher J; Ingham E
    J Heart Valve Dis; 2002 Jul; 11(4):463-71. PubMed ID: 12150291
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Subject-specific finite-element modeling of normal aortic valve biomechanics from 3D+t TEE images.
    Labrosse MR; Beller CJ; Boodhwani M; Hudson C; Sohmer B
    Med Image Anal; 2015 Feb; 20(1):162-72. PubMed ID: 25476416
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transient, three-dimensional, multiscale simulations of the human aortic valve.
    Weinberg EJ; Kaazempur Mofrad MR
    Cardiovasc Eng; 2007 Dec; 7(4):140-55. PubMed ID: 18026835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.