BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 28830724)

  • 1. Skin suturing and cortical surface viral infusion improves imaging of neuronal ensemble activity with head-mounted miniature microscopes.
    Li X; Cao VY; Zhang W; Mastwal SS; Liu Q; Otte S; Wang KH
    J Neurosci Methods; 2017 Nov; 291():238-248. PubMed ID: 28830724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualization of cortical, subcortical and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses.
    Resendez SL; Jennings JH; Ung RL; Namboodiri VM; Zhou ZC; Otis JM; Nomura H; McHenry JA; Kosyk O; Stuber GD
    Nat Protoc; 2016 Mar; 11(3):566-97. PubMed ID: 26914316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protocol for cortical-wide field-of-view two-photon imaging with quick neonatal adeno-associated virus injection.
    Oomoto I; Uwamori H; Matsubara C; Odagawa M; Kobayashi M; Kobayashi K; Ota K; Murayama M
    STAR Protoc; 2021 Dec; 2(4):101007. PubMed ID: 34950887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intact skull chronic windows for mesoscopic wide-field imaging in awake mice.
    Silasi G; Xiao D; Vanni MP; Chen AC; Murphy TH
    J Neurosci Methods; 2016 Jul; 267():141-9. PubMed ID: 27102043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic Cranial Window for Imaging Cortical Activity in Head-Fixed Mice.
    Augustinaite S; Kuhn B
    STAR Protoc; 2020 Dec; 1(3):100194. PubMed ID: 33377088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removable cranial windows for long-term imaging in awake mice.
    Goldey GJ; Roumis DK; Glickfeld LL; Kerlin AM; Reid RC; Bonin V; Schafer DP; Andermann ML
    Nat Protoc; 2014 Nov; 9(11):2515-2538. PubMed ID: 25275789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viral Injection and Cranial Window Implantation for In Vivo Two-Photon Imaging.
    Smith GB; Fitzpatrick D
    Methods Mol Biol; 2016; 1474():171-85. PubMed ID: 27515080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Miniaturization of two-photon microscopy for imaging in freely moving animals.
    Helmchen F; Denk W; Kerr JN
    Cold Spring Harb Protoc; 2013 Oct; 2013(10):904-13. PubMed ID: 24086055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope.
    Fernández-Alfonso T; Nadella KM; Iacaruso MF; Pichler B; Roš H; Kirkby PA; Silver RA
    J Neurosci Methods; 2014 Jan; 222():69-81. PubMed ID: 24200507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Miniaturized microscope with flexible light source input for neuronal imaging and manipulation in freely behaving animals.
    Srinivasan S; Hosokawa T; Vergara P; Chérasse Y; Naoi T; Sakurai T; Sakaguchi M
    Biochem Biophys Res Commun; 2019 Sep; 517(3):520-524. PubMed ID: 31376934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Successful In vivo Calcium Imaging with a Head-Mount Miniaturized Microscope in the Amygdala of Freely Behaving Mouse.
    Lee HS; Han JH
    J Vis Exp; 2020 Aug; (162):. PubMed ID: 32925887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-speed volumetric imaging of neuronal activity in freely moving rodents.
    Skocek O; Nöbauer T; Weilguny L; Martínez Traub F; Xia CN; Molodtsov MI; Grama A; Yamagata M; Aharoni D; Cox DD; Golshani P; Vaziri A
    Nat Methods; 2018 Jun; 15(6):429-432. PubMed ID: 29736000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New imaging instrument in animal models: Two-photon miniature microscope and large field of view miniature microscope for freely behaving animals.
    Guo C; Wang A; Cheng H; Chen L
    J Neurochem; 2023 Feb; 164(3):270-283. PubMed ID: 36281555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-photon head-mounted microscope for imaging deep cortical layers in freely moving rats.
    Klioutchnikov A; Wallace DJ; Frosz MH; Zeltner R; Sawinski J; Pawlak V; Voit KM; Russell PSJ; Kerr JND
    Nat Methods; 2020 May; 17(5):509-513. PubMed ID: 32371979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging Cortical Dynamics in GCaMP Transgenic Rats with a Head-Mounted Widefield Macroscope.
    Scott BB; Thiberge SY; Guo C; Tervo DGR; Brody CD; Karpova AY; Tank DW
    Neuron; 2018 Dec; 100(5):1045-1058.e5. PubMed ID: 30482694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Miniaturized head-mounted microscope for whole-cortex mesoscale imaging in freely behaving mice.
    Rynes ML; Surinach DA; Linn S; Laroque M; Rajendran V; Dominguez J; Hadjistamoulou O; Navabi ZS; Ghanbari L; Johnson GW; Nazari M; Mohajerani MH; Kodandaramaiah SB
    Nat Methods; 2021 Apr; 18(4):417-425. PubMed ID: 33820987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging neuronal populations in behaving rodents: paradigms for studying neural circuits underlying behavior in the mammalian cortex.
    Chen JL; Andermann ML; Keck T; Xu NL; Ziv Y
    J Neurosci; 2013 Nov; 33(45):17631-40. PubMed ID: 24198355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An optical clearing imaging window: Realization of mouse brain imaging and manipulation through scalp and skull.
    Feng W; Liu CJ; Wang L; Zhang C
    J Cereb Blood Flow Metab; 2023 Dec; 43(12):2105-2119. PubMed ID: 36999642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging the Dynamics of Neocortical Population Activity in Behaving and Freely Moving Mammals.
    Grinvald A; Petersen CC
    Adv Exp Med Biol; 2015; 859():273-96. PubMed ID: 26238057
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.