BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 28830792)

  • 21. Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris.
    Guan J; Stromhaug PE; George MD; Habibzadegah-Tari P; Bevan A; Dunn WA; Klionsky DJ
    Mol Biol Cell; 2001 Dec; 12(12):3821-38. PubMed ID: 11739783
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assays for the biochemical and ultrastructural measurement of selective and nonselective types of autophagy in the yeast Saccharomyces cerevisiae.
    Guimaraes RS; Delorme-Axford E; Klionsky DJ; Reggiori F
    Methods; 2015 Mar; 75():141-50. PubMed ID: 25484341
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeted inactivation of the mecB gene, encoding cystathionine-gamma-lyase, shows that the reverse transsulfuration pathway is required for high-level cephalosporin biosynthesis in Acremonium chrysogenum C10 but not for methionine induction of the cephalosporin genes.
    Liu G; Casqueiro J; Bañuelos O; Cardoza RE; Gutiérrez S; Martín JF
    J Bacteriol; 2001 Mar; 183(5):1765-72. PubMed ID: 11160109
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deactivation of the autotrophic sulfate assimilation pathway substantially reduces high-level β-lactam antibiotic biosynthesis and arthrospore formation in a production strain from Acremonium chrysogenum.
    Terfehr D; Kück U
    Microbiology (Reading); 2017 Jun; 163(6):817-828. PubMed ID: 28598313
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Environmentally safe production of 7-aminodeacetoxycephalosporanic acid (7-ADCA) using recombinant strains of Acremonium chrysogenum.
    Velasco J; Luis Adrio J; Angel Moreno M; Díez B; Soler G; Barredo JL
    Nat Biotechnol; 2000 Aug; 18(8):857-61. PubMed ID: 10932155
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RNA-silencing in Penicillium chrysogenum and Acremonium chrysogenum: validation studies using beta-lactam genes expression.
    Ullán RV; Godio RP; Teijeira F; Vaca I; García-Estrada C; Feltrer R; Kosalkova K; Martín JF
    J Microbiol Methods; 2008 Oct; 75(2):209-18. PubMed ID: 18590779
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strain improvement studies on production of cephalosporin C from Acremonium chrysogenum ATCC 48272.
    Ellaiah P; Kumar JP; Saisha V; Sumitra JJ; Vaishali P
    Hindustan Antibiot Bull; 2003 Feb-2004 Nov; 45-46(1-4):11-5. PubMed ID: 16281823
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression of cefF significantly decreased deacetoxycephalosporin C formation during cephalosporin C production in Acremonium chrysogenum.
    An Y; Dong H; Liu G
    J Ind Microbiol Biotechnol; 2012 Feb; 39(2):269-74. PubMed ID: 21866341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The critical role of plasma membrane H+-ATPase activity in cephalosporin C biosynthesis of Acremonium chrysogenum.
    Zhgun A; Dumina M; Valiakhmetov A; Eldarov M
    PLoS One; 2020; 15(8):e0238452. PubMed ID: 32866191
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transport of proteins to the yeast vacuole: autophagy, cytoplasm-to-vacuole targeting, and role of the vacuole in degradation.
    Teter SA; Klionsky DJ
    Semin Cell Dev Biol; 2000 Jun; 11(3):173-9. PubMed ID: 10906274
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective autophagy in budding yeast.
    Suzuki K
    Cell Death Differ; 2013 Jan; 20(1):43-8. PubMed ID: 22705847
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Functional characteristic of the CefT transporter of the MFS family involved in the transportation of beta-lactam antibiotics in Acremonium chrysogenum and Saccharomyces cerevisiae].
    Dumina MV; Zhgun AA; Kerpichnikov IV; Domracheva AG; Novak MI; Valiakhmetov AIa; Knorre DA; Severin FF; Él'darov MA; Bartoshevich IuÉ
    Prikl Biokhim Mikrobiol; 2013; 49(4):372-81. PubMed ID: 24455863
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stimulation of cephalosporin C production in Acremonium chrysogenum M35 by glycerol.
    Shin HY; Lee JY; Jung YR; Kim SW
    Bioresour Technol; 2010 Jun; 101(12):4549-53. PubMed ID: 20171092
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The gene encoding gamma-actin from the cephalosporin producer Acremonium chrysogenum.
    Díez B; Velasco J; Marcos AT; Rodríguez M; de la Fuente JL; Barredo JL
    Appl Microbiol Biotechnol; 2000 Dec; 54(6):786-91. PubMed ID: 11152070
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improvement of cephalosporin C production by recombinant DNA integration in Acremonium chrysogenum.
    Liu Y; Gong G; Xie L; Yuan N; Zhu C; Zhu B; Hu Y
    Mol Biotechnol; 2010 Feb; 44(2):101-9. PubMed ID: 19787461
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solid-state and submerged fermentations show different gene expression profiles in cephalosporin C production by Acremonium chrysogenum.
    López-Calleja AC; Cuadra T; Barrios-González J; Fierro F; Fernández FJ
    J Mol Microbiol Biotechnol; 2012; 22(2):126-34. PubMed ID: 22678076
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mitochondrial degradation during starvation is selective and temporally distinct from bulk autophagy in yeast.
    Eiyama A; Kondo-Okamoto N; Okamoto K
    FEBS Lett; 2013 Jun; 587(12):1787-92. PubMed ID: 23660403
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Apg2 is a novel protein required for the cytoplasm to vacuole targeting, autophagy, and pexophagy pathways.
    Wang CW; Kim J; Huang WP; Abeliovich H; Stromhaug PE; Dunn WA; Klionsky DJ
    J Biol Chem; 2001 Aug; 276(32):30442-51. PubMed ID: 11382760
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The cefT gene of Acremonium chrysogenum C10 encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production.
    Ullán RV; Liu G; Casqueiro J; Gutiérrez S; Bañuelos O; Martín JF
    Mol Genet Genomics; 2002 Jul; 267(5):673-83. PubMed ID: 12172807
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two aminopeptidase I homologs convergently contribute to pathobiology of fungal entomopathogen Beauveria bassiana via divergent physiology-dependent autophagy pathways for vacuolar targeting.
    Ding JL; Wei K; Feng MG; Ying SH
    J Adv Res; 2024 May; 59():1-17. PubMed ID: 37339721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.