These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 28830931)

  • 41. Structural and spectroscopic analyses of the sporulation killing factor biosynthetic enzyme SkfB, a bacterial AdoMet radical sactisynthase.
    Grell TAJ; Kincannon WM; Bruender NA; Blaesi EJ; Krebs C; Bandarian V; Drennan CL
    J Biol Chem; 2018 Nov; 293(45):17349-17361. PubMed ID: 30217813
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adenosylmethionine as a source of 5'-deoxyadenosyl radicals.
    Fontecave M; Mulliez E; Ollagnier-de-Choudens S
    Curr Opin Chem Biol; 2001 Oct; 5(5):506-11. PubMed ID: 11578923
    [TBL] [Abstract][Full Text] [Related]  

  • 43. SkfB Abstracts a Hydrogen Atom from Cα on SkfA To Initiate Thioether Cross-Link Formation.
    Bruender NA; Bandarian V
    Biochemistry; 2016 Aug; 55(30):4131-4. PubMed ID: 27410522
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural features and substrate engagement in peptide-modifying radical SAM enzymes.
    Cheek LE; Zhu W
    Arch Biochem Biophys; 2024 Jun; 756():110012. PubMed ID: 38663796
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Radical S-adenosylmethionine enzymes.
    Broderick JB; Duffus BR; Duschene KS; Shepard EM
    Chem Rev; 2014 Apr; 114(8):4229-317. PubMed ID: 24476342
    [No Abstract]   [Full Text] [Related]  

  • 46. Introduction to the thematic minireview series on radical S-adenosylmethionine (SAM) enzymes.
    Banerjee R
    J Biol Chem; 2015 Feb; 290(7):3962-3. PubMed ID: 25477525
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Activation of class III ribonucleotide reductase from E. coli. The electron transfer from the iron-sulfur center to S-adenosylmethionine.
    Padovani D; Thomas F; Trautwein AX; Mulliez E; Fontecave M
    Biochemistry; 2001 Jun; 40(23):6713-9. PubMed ID: 11389585
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Post-Translational Formation of Aminomalonate by a Promiscuous Peptide-Modifying Radical SAM Enzyme.
    Ma S; Chen H; Li H; Ji X; Deng Z; Ding W; Zhang Q
    Angew Chem Int Ed Engl; 2021 Sep; 60(36):19957-19964. PubMed ID: 34164914
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Photoinduced Electron Transfer in a Radical SAM Enzyme Generates an
    Yang H; Impano S; Shepard EM; James CD; Broderick WE; Broderick JB; Hoffman BM
    J Am Chem Soc; 2019 Oct; 141(40):16117-16124. PubMed ID: 31509404
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Coordination and mechanism of reversible cleavage of S-adenosylmethionine by the [4Fe-4S] center in lysine 2,3-aminomutase.
    Chen D; Walsby C; Hoffman BM; Frey PA
    J Am Chem Soc; 2003 Oct; 125(39):11788-9. PubMed ID: 14505379
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bioinformatic Mapping of Radical S-Adenosylmethionine-Dependent Ribosomally Synthesized and Post-Translationally Modified Peptides Identifies New Cα, Cβ, and Cγ-Linked Thioether-Containing Peptides.
    Hudson GA; Burkhart BJ; DiCaprio AJ; Schwalen CJ; Kille B; Pogorelov TV; Mitchell DA
    J Am Chem Soc; 2019 May; 141(20):8228-8238. PubMed ID: 31059252
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Radical S-Adenosyl-L-methionine Enzyme QhpD Catalyzes Sequential Formation of Intra-protein Sulfur-to-Methylene Carbon Thioether Bonds.
    Nakai T; Ito H; Kobayashi K; Takahashi Y; Hori H; Tsubaki M; Tanizawa K; Okajima T
    J Biol Chem; 2015 Apr; 290(17):11144-66. PubMed ID: 25778402
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural and mechanistic basis for RiPP epimerization by a radical SAM enzyme.
    Kubiak X; Polsinelli I; Chavas LMG; Fyfe CD; Guillot A; Fradale L; Brewee C; Grimaldi S; Gerbaud G; Thureau A; Legrand P; Berteau O; Benjdia A
    Nat Chem Biol; 2024 Mar; 20(3):382-391. PubMed ID: 38158457
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Anaerobic sulfatase-maturating enzymes: radical SAM enzymes able to catalyze in vitro sulfatase post-translational modification.
    Benjdia A; Leprince J; Guillot A; Vaudry H; Rabot S; Berteau O
    J Am Chem Soc; 2007 Mar; 129(12):3462-3. PubMed ID: 17335281
    [No Abstract]   [Full Text] [Related]  

  • 55. Diphthamide biosynthesis requires an organic radical generated by an iron-sulphur enzyme.
    Zhang Y; Zhu X; Torelli AT; Lee M; Dzikovski B; Koralewski RM; Wang E; Freed J; Krebs C; Ealick SE; Lin H
    Nature; 2010 Jun; 465(7300):891-6. PubMed ID: 20559380
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pyruvate formate-lyase activating enzyme: elucidation of a novel mechanism for glycyl radical formation.
    Buis JM; Broderick JB
    Arch Biochem Biophys; 2005 Jan; 433(1):288-96. PubMed ID: 15581584
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Noncanonical Radical SAM Enzyme Chemistry Learned from Diphthamide Biosynthesis.
    Dong M; Zhang Y; Lin H
    Biochemistry; 2018 Jun; 57(25):3454-3459. PubMed ID: 29708734
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural insights into radical generation by the radical SAM superfamily.
    Vey JL; Drennan CL
    Chem Rev; 2011 Apr; 111(4):2487-506. PubMed ID: 21370834
    [No Abstract]   [Full Text] [Related]  

  • 59. S-adenosylmethionine radical enzymes.
    Marsh EN; Patwardhan A; Huhta MS
    Bioorg Chem; 2004 Oct; 32(5):326-40. PubMed ID: 15381399
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Post-translational formylglycine modification of bacterial sulfatases by the radical S-adenosylmethionine protein AtsB.
    Fang Q; Peng J; Dierks T
    J Biol Chem; 2004 Apr; 279(15):14570-8. PubMed ID: 14749327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.