BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 28830979)

  • 1. Alterations in fatty acid metabolism and sirtuin signaling characterize early type-2 diabetic hearts of fructose-fed rats.
    Lou PH; Lucchinetti E; Scott KY; Huang Y; Gandhi M; Hersberger M; Clanachan AS; Lemieux H; Zaugg M
    Physiol Rep; 2017 Aug; 5(16):. PubMed ID: 28830979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early mitochondrial dysfunction in glycolytic muscle, but not oxidative muscle, of the fructose-fed insulin-resistant rat.
    Warren BE; Lou PH; Lucchinetti E; Zhang L; Clanachan AS; Affolter A; Hersberger M; Zaugg M; Lemieux H
    Am J Physiol Endocrinol Metab; 2014 Mar; 306(6):E658-67. PubMed ID: 24425766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of sarcolemmal FAT/CD36 by sulfo-N-succinimidyl oleate rapidly corrects metabolism and restores function in the diabetic heart following hypoxia/reoxygenation.
    Mansor LS; Sousa Fialho MDL; Yea G; Coumans WA; West JA; Kerr M; Carr CA; Luiken JJFP; Glatz JFC; Evans RD; Griffin JL; Tyler DJ; Clarke K; Heather LC
    Cardiovasc Res; 2017 Jun; 113(7):737-748. PubMed ID: 28419197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An overview of the crosstalk between inflammatory processes and metabolic dysregulation during diabetic cardiomyopathy.
    Palomer X; Salvadó L; Barroso E; Vázquez-Carrera M
    Int J Cardiol; 2013 Oct; 168(4):3160-72. PubMed ID: 23932046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac and skeletal muscle fatty acid transport and transporters and triacylglycerol and fatty acid oxidation in lean and Zucker diabetic fatty rats.
    Bonen A; Holloway GP; Tandon NN; Han XX; McFarlan J; Glatz JF; Luiken JJ
    Am J Physiol Regul Integr Comp Physiol; 2009 Oct; 297(4):R1202-12. PubMed ID: 19675275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased oxidative metabolism following hypoxia in the type 2 diabetic heart, despite normal hypoxia signalling and metabolic adaptation.
    Mansor LS; Mehta K; Aksentijevic D; Carr CA; Lund T; Cole MA; Le Page L; Sousa Fialho Mda L; Shattock MJ; Aasum E; Clarke K; Tyler DJ; Heather LC
    J Physiol; 2016 Jan; 594(2):307-20. PubMed ID: 26574233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Streptozotocin diabetes increases mRNA expression of ketogenic enzymes in the rat heart.
    Cook GA; Lavrentyev EN; Pham K; Park EA
    Biochim Biophys Acta Gen Subj; 2017 Feb; 1861(2):307-312. PubMed ID: 27845231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In obese Zucker rats, lipids accumulate in the heart despite normal mitochondrial content, morphology and long-chain fatty acid oxidation.
    Holloway GP; Snook LA; Harris RJ; Glatz JF; Luiken JJ; Bonen A
    J Physiol; 2011 Jan; 589(Pt 1):169-80. PubMed ID: 21041527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disturbed Fatty Acid Oxidation, Endoplasmic Reticulum Stress, and Apoptosis in Left Ventricle of Patients With Type 2 Diabetes.
    Ljubkovic M; Gressette M; Bulat C; Cavar M; Bakovic D; Fabijanic D; Grkovic I; Lemaire C; Marinovic J
    Diabetes; 2019 Oct; 68(10):1924-1933. PubMed ID: 31391173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rosiglitazone increases fatty acid oxidation and fatty acid translocase (FAT/CD36) but not carnitine palmitoyltransferase I in rat muscle mitochondria.
    Benton CR; Holloway GP; Campbell SE; Yoshida Y; Tandon NN; Glatz JF; Luiken JJ; Spriet LL; Bonen A
    J Physiol; 2008 Mar; 586(6):1755-66. PubMed ID: 18238811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of dietary alpha-linolenic acid on the activity and gene expression of hepatic fatty acid oxidation enzymes.
    Ide T
    Biofactors; 2000; 13(1-4):9-14. PubMed ID: 11237206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myocardial infarction in rats causes partial impairment in insulin response associated with reduced fatty acid oxidation and mitochondrial gene expression.
    Amorim PA; Nguyen TD; Shingu Y; Schwarzer M; Mohr FW; Schrepper A; Doenst T
    J Thorac Cardiovasc Surg; 2010 Nov; 140(5):1160-7. PubMed ID: 20850803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aspects of long-chain acyl-COA metabolism.
    Tol VA
    Mol Cell Biochem; 1975 Apr; 7(1):19-31. PubMed ID: 1134497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of puerarin in promoting fatty acid oxidation by increasing mitochondrial oxidative capacity and biogenesis in skeletal muscle in diabetic rats.
    Chen XF; Wang L; Wu YZ; Song SY; Min HY; Yang Y; He X; Liang Q; Yi L; Wang Y; Gao Q
    Nutr Diabetes; 2018 Jan; 8(1):1. PubMed ID: 29330446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart.
    Thapa D; Zhang M; Manning JR; Guimarães DA; Stoner MW; O'Doherty RM; Shiva S; Scott I
    Am J Physiol Heart Circ Physiol; 2017 Aug; 313(2):H265-H274. PubMed ID: 28526709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sirt5 improves cardiomyocytes fatty acid metabolism and ameliorates cardiac lipotoxicity in diabetic cardiomyopathy via CPT2 de-succinylation.
    Wu M; Tan J; Cao Z; Cai Y; Huang Z; Chen Z; He W; Liu X; Jiang Y; Gao Q; Deng B; Wang J; Yuan W; Zhang H; Chen Y
    Redox Biol; 2024 Jul; 73():103184. PubMed ID: 38718533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diabetic Rat Hearts Show More Favorable Metabolic Adaptation to Omegaven Containing High Amounts of n3 Fatty Acids Than Intralipid Containing n6 Fatty Acids.
    Lucchinetti E; Lou PH; Hersberger M; Clanachan AS; Zaugg M
    Anesth Analg; 2020 Sep; 131(3):943-954. PubMed ID: 32398434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired substrate-mediated cardiac mitochondrial complex I respiration with unaltered regulation of fatty acid metabolism and oxidative stress status in type 2 diabetic Asian Indians.
    Jayakumari NR; Rajendran RS; Sivasailam A; Vimala SS; Nanda S; Manjunatha S; Pillai VV; Karunakaran J; Gopala S
    J Diabetes; 2020 Jul; 12(7):542-555. PubMed ID: 32125087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The benefit of medium-chain triglyceride therapy on the cardiac function of SHRs is associated with a reversal of metabolic and signaling alterations.
    Iemitsu M; Shimojo N; Maeda S; Irukayama-Tomobe Y; Sakai S; Ohkubo T; Tanaka Y; Miyauchi T
    Am J Physiol Heart Circ Physiol; 2008 Jul; 295(1):H136-44. PubMed ID: 18456726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of diabetic cardiomyopathy by caloric restriction is mediated by intracellular signaling pathways involving 'SIRT1 and PGC-1α'.
    Waldman M; Cohen K; Yadin D; Nudelman V; Gorfil D; Laniado-Schwartzman M; Kornwoski R; Aravot D; Abraham NG; Arad M; Hochhauser E
    Cardiovasc Diabetol; 2018 Aug; 17(1):111. PubMed ID: 30071860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.