These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 28831474)

  • 1. Differential capacitance of an electric double layer with asymmetric solvent-mediated interactions: mean-field theory and Monte Carlo simulations.
    Caetano DLZ; Bossa GV; de Oliveira VM; Brown MA; de Carvalho SJ; May S
    Phys Chem Chem Phys; 2017 Sep; 19(35):23971-23981. PubMed ID: 28831474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of ion hydration for the differential capacitance of an electric double layer.
    Caetano DL; Bossa GV; de Oliveira VM; Brown MA; de Carvalho SJ; May S
    Phys Chem Chem Phys; 2016 Oct; 18(40):27796-27807. PubMed ID: 27711476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of anisotropic ion shape on structure and capacitance of an electric double layer: a Monte Carlo and density functional study.
    Lamperski S; Kaja M; Bhuiyan LB; Wu J; Henderson D
    J Chem Phys; 2013 Aug; 139(5):054703. PubMed ID: 23927277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo Study of a Planar Electric Double Layer Formed by Ions with Off-Center Charge.
    Lamperski S; Bhuiyan LB; Henderson D; Kaja M
    Langmuir; 2017 Oct; 33(42):11554-11560. PubMed ID: 28748702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling hydration-mediated ion-ion interactions in electrolytes through oscillating Yukawa potentials.
    Spaight J; Downing R; May S; de Carvalho SJ; Bossa GV
    Phys Rev E; 2020 May; 101(5-1):052603. PubMed ID: 32575199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the camel-to-bell shape transition of the differential capacitance using mean-field theory and Monte Carlo simulations.
    Bossa GV; Caetano DLZ; de Carvalho SJ; Bohinc K; May S
    Eur Phys J E Soft Matter; 2018 Sep; 41(9):113. PubMed ID: 30259300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A classical density functional theory for the asymmetric restricted primitive model of ionic liquids.
    Lu H; Nordholm S; Woodward CE; Forsman J
    J Chem Phys; 2018 May; 148(19):193814. PubMed ID: 30307217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double-layer in ionic liquids: paradigm change?
    Kornyshev AA
    J Phys Chem B; 2007 May; 111(20):5545-57. PubMed ID: 17469864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporation of ion and solvent structure into mean-field modeling of the electric double layer.
    Bohinc K; Bossa GV; May S
    Adv Colloid Interface Sci; 2017 Nov; 249():220-233. PubMed ID: 28571611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulations and mean-field modeling of electric double layers at weakly and moderately charged spherical macroions.
    Caetano DLZ; de Carvalho SJ; Bossa GV; May S
    Phys Rev E; 2021 Sep; 104(3-1):034609. PubMed ID: 34654110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the theory of electric double layer with explicit account of a polarizable co-solvent.
    Budkov YA; Kolesnikov AL; Kiselev MG
    J Chem Phys; 2016 May; 144(18):184703. PubMed ID: 27179496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of ionic size on the structure of cylindrical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Goel T; Patra CN; Ghosh SK; Mukherjee T
    J Phys Chem B; 2011 Sep; 115(37):10903-10. PubMed ID: 21827170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of spherical electric double layers with fully asymmetric electrolytes: a systematic study by Monte Carlo simulations and density functional theory.
    Patra CN
    J Chem Phys; 2014 Nov; 141(18):184702. PubMed ID: 25399154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying the thickness of the electrical double layer neutralizing a planar electrode: the capacitive compactness.
    Guerrero-García GI; González-Tovar E; Chávez-Páez M; Kłos J; Lamperski S
    Phys Chem Chem Phys; 2017 Dec; 20(1):262-275. PubMed ID: 29204593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Off-center charge model revisited: Electrical double layer with multivalent cations.
    Lamperski S; Bhuiyan LB; Henderson D
    J Chem Phys; 2018 Aug; 149(8):084706. PubMed ID: 30193502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and thermodynamic properties of the electrical double layer in slit nanopores: A Monte Carlo study.
    Lamperski S
    J Chem Phys; 2020 Oct; 153(13):134703. PubMed ID: 33032423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of nonelectrostatic ion-ion interactions on double-layer capacitance.
    Zhao H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051502. PubMed ID: 23214784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature dependence of differential capacitance in the electric double layer.Symmetric valency 1:1 electrolytes.
    Islam MS; Lamperski S; Islam MM; Henderson D; Bhuiyan LB
    J Chem Phys; 2020 May; 152(20):204702. PubMed ID: 32486666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of density functional theory to study the double layer of an electrolyte with an explicit dimer model for the solvent.
    Henderson D; Jiang DE; Jin Z; Wu J
    J Phys Chem B; 2012 Sep; 116(36):11356-61. PubMed ID: 22889259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic liquid near a charged wall: structure and capacitance of electrical double layer.
    Fedorov MV; Kornyshev AA
    J Phys Chem B; 2008 Sep; 112(38):11868-72. PubMed ID: 18729396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.