These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 2883169)

  • 1. Water relations of solute accumulation in Pseudomonas fluorescens.
    Prior BA; Kenyon CP; van der Veen M; Mildenhall JP
    J Appl Bacteriol; 1987 Feb; 62(2):119-28. PubMed ID: 2883169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of water activity on production of beta-lactam antibiotics by Streptomyces clavuligerus in submerged culture.
    Cochet N; Demain AL
    J Appl Bacteriol; 1996 Mar; 80(3):333-7. PubMed ID: 8852680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solute stresses affect growth patterns, endogenous water potentials and accumulation of sugars and sugar alcohols in cells of the biocontrol yeast Candida sake.
    Abadias M; Teixidó N; Usall J; Viñas I; Magan N
    J Appl Microbiol; 2000 Dec; 89(6):1009-17. PubMed ID: 11123474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osmoregulation by slow changes in aldose reductase and rapid changes in sorbitol flux.
    Bagnasco SM; Murphy HR; Bedford JJ; Burg MB
    Am J Physiol; 1988 Jun; 254(6 Pt 1):C788-92. PubMed ID: 3132044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Asparaginase and glutaminase activity in Pseudomonas fluorescens in continuous cultivation].
    Eremenko VV; Zhukov AV; Nikolaev AIa
    Mikrobiologiia; 1975; 44(4):615-20. PubMed ID: 809640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methionine degradation by Pseudomonas fluorescens UK1 and its methionine-utilizing mutant.
    Laakso S; Söderling E; Nurmikko V
    J Gen Microbiol; 1976 Jun; 94(2):305-12. PubMed ID: 820833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Promotion of antibiotic production by high ethanol, high NaCl concentration, or heat shock in Pseudomonas fluorescens S272.
    Nakata K; Yoshimoto A; Yamada Y
    Biosci Biotechnol Biochem; 1999 Feb; 63(2):293-7. PubMed ID: 10192908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Further studies on the degradation of folic acid in a growing culture of Pseudomonas fluorescens UK-1.
    Soini J; Majasaari K
    Acta Chem Scand; 1973 Oct; 27(10):3611-5. PubMed ID: 4131561
    [No Abstract]   [Full Text] [Related]  

  • 9. Changes in major intracellular osmolytes in L-929 cells following rapid and slow application of hyperosmotic media.
    Libioulle C; Corbesier L; Gilles R
    Comp Biochem Physiol A Mol Integr Physiol; 2001 Oct; 130(3):461-70. PubMed ID: 11913458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Regulation of asparaginase and glutaminase activity in Pseudomonas fluorescens mutants lacking in the ability to synthesize glutamic acid].
    Zhukov AV; Eremenko VV; Nikolaev AIa
    Mikrobiologiia; 1976 JUL-AUG; 45(4):673-8. PubMed ID: 824527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of water activity on the growth and respiration of Pseudomonas fluorescens.
    Prior BA
    J Appl Bacteriol; 1978 Feb; 44(1):97-106. PubMed ID: 416013
    [No Abstract]   [Full Text] [Related]  

  • 12. Modelling the effect of water activity reduction by sodium chloride or glycerol on conidial germination and radial growth of filamentous fungi encountered in dairy foods.
    Nguyen Van Long N; Rigalma K; Coroller L; Dadure R; Debaets S; Mounier J; Vasseur V
    Food Microbiol; 2017 Dec; 68():7-15. PubMed ID: 28800827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Influence of salinity and temperature on fatty acid composition of Pseudomonas fluorescens GNP-OHP-3 membrane].
    Pucci GN; Härtig C; Pucci OH
    Rev Argent Microbiol; 2004; 36(1):6-15. PubMed ID: 15174743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose availability and the growth rate of colonies of Pseudomonas fluorescens.
    Rieck VT; Palumbo SA; Witter LD
    J Gen Microbiol; 1973 Jan; 74(1):1-8. PubMed ID: 4632977
    [No Abstract]   [Full Text] [Related]  

  • 15. Modulation of osmolytes in MDCK cells by solutes, inhibitors, and vasopressin.
    Heilig CW; Brenner RM; Yu AS; Kone BC; Gullans SR
    Am J Physiol; 1990 Oct; 259(4 Pt 2):F653-9. PubMed ID: 2221103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of solute and hydrogen ion concentration on the water relations of some xerophilic fungi.
    Pitt JI; Hocking AD
    J Gen Microbiol; 1977 Jul; 101(1):35-40. PubMed ID: 19558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of nitrogen and carbon sources on proteinase production by Pseudomonas fluorescens.
    Fairbairn DJ; Law BA
    J Appl Bacteriol; 1987 Feb; 62(2):105-13. PubMed ID: 3106298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of NaCl prevents aggregation of recombinant COMP-angiopoietin-1 in Chinese hamster ovary cells.
    Ju HK; Hwang SJ; Jeon CJ; Lee GM; Yoon SK
    J Biotechnol; 2009 Aug; 143(2):145-50. PubMed ID: 19559063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osmoregulation in Escherichia coli by accumulation of organic osmolytes: betaines, glutamic acid, and trehalose.
    Larsen PI; Sydnes LK; Landfald B; Strøm AR
    Arch Microbiol; 1987 Feb; 147(1):1-7. PubMed ID: 2883950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of growth temperature on the accumulation of glucose-oxidation products in Pseudomonas fluorescens.
    Lynch WH; MacLeod J; Franklin M
    Can J Microbiol; 1975 Oct; 21(10):1553-9. PubMed ID: 811341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.