These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 28831743)

  • 1. Recurrent establishment of de novo centromeres in the pericentromeric region of maize chromosome 3.
    Zhao H; Zeng Z; Koo DH; Gill BS; Birchler JA; Jiang J
    Chromosome Res; 2017 Oct; 25(3-4):299-311. PubMed ID: 28831743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maize centromeres expand and adopt a uniform size in the genetic background of oat.
    Wang K; Wu Y; Zhang W; Dawe RK; Jiang J
    Genome Res; 2014 Jan; 24(1):107-16. PubMed ID: 24100079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic and epigenetic effects on centromere establishment.
    Ling YH; Lin Z; Yuen KWY
    Chromosoma; 2020 Mar; 129(1):1-24. PubMed ID: 31781852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo centromere formation in pericentromeric region of rice chromosome 8.
    Xue C; Liu G; Sun S; Liu X; Guo R; Cheng Z; Yu H; Gu M; Liu K; Zhou Y; Zhang T; Gong Z
    Plant J; 2022 Aug; 111(3):859-871. PubMed ID: 35678753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic dynamics of centromeres and neocentromeres in Cryptococcus deuterogattii.
    Schotanus K; Yadav V; Heitman J
    PLoS Genet; 2021 Aug; 17(8):e1009743. PubMed ID: 34464380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential de novo centromere formation and inactivation on a chromosomal fragment in maize.
    Liu Y; Su H; Pang J; Gao Z; Wang XJ; Birchler JA; Han F
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):E1263-71. PubMed ID: 25733907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic chromatin changes associated with de novo centromere formation in maize euchromatin.
    Su H; Liu Y; Liu YX; Lv Z; Li H; Xie S; Gao Z; Pang J; Wang XJ; Lai J; Birchler JA; Han F
    Plant J; 2016 Dec; 88(5):854-866. PubMed ID: 27531446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene Expression and Chromatin Modifications Associated with Maize Centromeres.
    Zhao H; Zhu X; Wang K; Gent JI; Zhang W; Dawe RK; Jiang J
    G3 (Bethesda); 2015 Nov; 6(1):183-92. PubMed ID: 26564952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo centromere formation on a chromosome fragment in maize.
    Fu S; Lv Z; Gao Z; Wu H; Pang J; Zhang B; Dong Q; Guo X; Wang XJ; Birchler JA; Han F
    Proc Natl Acad Sci U S A; 2013 Apr; 110(15):6033-6. PubMed ID: 23530217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic control of centromere: what can we learn from neocentromere?
    Kim T
    Genes Genomics; 2022 Mar; 44(3):317-325. PubMed ID: 34843088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a maize neocentromere in an oat-maize addition line.
    Topp CN; Okagaki RJ; Melo JR; Kynast RG; Phillips RL; Dawe RK
    Cytogenet Genome Res; 2009; 124(3-4):228-38. PubMed ID: 19556776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of novel CENP-A domains on tandem repetitive DNA and across chromosome breakpoints on human chromosome 8q21 neocentromeres.
    Hasson D; Alonso A; Cheung F; Tepperberg JH; Papenhausen PR; Engelen JJ; Warburton PE
    Chromosoma; 2011 Dec; 120(6):621-32. PubMed ID: 21826412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maize centromere structure and evolution: sequence analysis of centromeres 2 and 5 reveals dynamic Loci shaped primarily by retrotransposons.
    Wolfgruber TK; Sharma A; Schneider KL; Albert PS; Koo DH; Shi J; Gao Z; Han F; Lee H; Xu R; Allison J; Birchler JA; Jiang J; Dawe RK; Presting GG
    PLoS Genet; 2009 Nov; 5(11):e1000743. PubMed ID: 19956743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong epigenetic similarity between maize centromeric and pericentromeric regions at the level of small RNAs, DNA methylation and H3 chromatin modifications.
    Gent JI; Dong Y; Jiang J; Dawe RK
    Nucleic Acids Res; 2012 Feb; 40(4):1550-60. PubMed ID: 22058126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inbreeding drives maize centromere evolution.
    Schneider KL; Xie Z; Wolfgruber TK; Presting GG
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):E987-96. PubMed ID: 26858403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres.
    Zhang W; Friebe B; Gill BS; Jiang J
    Chromosoma; 2010 Oct; 119(5):553-63. PubMed ID: 20499078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosome engineering allows the efficient isolation of vertebrate neocentromeres.
    Shang WH; Hori T; Martins NM; Toyoda A; Misu S; Monma N; Hiratani I; Maeshima K; Ikeo K; Fujiyama A; Kimura H; Earnshaw WC; Fukagawa T
    Dev Cell; 2013 Mar; 24(6):635-48. PubMed ID: 23499358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetic modification of centromeric chromatin: hypomethylation of DNA sequences in the CENH3-associated chromatin in Arabidopsis thaliana and maize.
    Zhang W; Lee HR; Koo DH; Jiang J
    Plant Cell; 2008 Jan; 20(1):25-34. PubMed ID: 18239133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histone modifications associated with both A and B chromosomes of maize.
    Jin W; Lamb JC; Zhang W; Kolano B; Birchler JA; Jiang J
    Chromosome Res; 2008; 16(8):1203-14. PubMed ID: 18987983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosomal dynamics of human neocentromere formation.
    Warburton PE
    Chromosome Res; 2004; 12(6):617-26. PubMed ID: 15289667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.