BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 28831792)

  • 1. Feasibility of spatial frequency-domain imaging for monitoring palpable breast lesions.
    Robbins CM; Raghavan G; Antaki JF; Kainerstorfer JM
    J Biomed Opt; 2017 Aug; 22(12):1-9. PubMed ID: 28831792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contrast-enhanced near-infrared laser mammography with a prototype breast scanner: feasibility study with tissue phantoms and preliminary results of imaging experimental tumors.
    Boehm T; Hochmuth A; Malich A; Reichenbach JR; Fleck M; Kaiser WA
    Invest Radiol; 2001 Oct; 36(10):573-81. PubMed ID: 11577267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue-simulating phantoms for assessing potential near-infrared fluorescence imaging applications in breast cancer surgery.
    Pleijhuis R; Timmermans A; De Jong J; De Boer E; Ntziachristos V; Van Dam G
    J Vis Exp; 2014 Sep; (91):51776. PubMed ID: 25286185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of breast specific gamma imaging and molecular breast tomosynthesis in breast cancer detection: Evaluation in phantoms.
    Gong Z; Williams MB
    Med Phys; 2015 Jul; 42(7):4250-9. PubMed ID: 26133623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues.
    Laughney AM; Krishnaswamy V; Rice TB; Cuccia DJ; Barth RJ; Tromberg BJ; Paulsen KD; Pogue BW; Wells WA
    J Biomed Opt; 2013 Mar; 18(3):036012. PubMed ID: 23525360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue phantom-based breast cancer detection using continuous near-infrared sensor.
    Liu D; Liu X; Zhang Y; Wang Q; Lu J
    Bioengineered; 2016 Sep; 7(5):321-326. PubMed ID: 27459672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review of optical breast imaging and spectroscopy.
    Grosenick D; Rinneberg H; Cubeddu R; Taroni P
    J Biomed Opt; 2016 Sep; 21(9):091311. PubMed ID: 27403837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compressed single pixel imaging in the spatial frequency domain.
    Torabzadeh M; Park IY; Bartels RA; Durkin AJ; Tromberg BJ
    J Biomed Opt; 2017 Mar; 22(3):30501. PubMed ID: 28300272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multimodal breast cancer imaging using coregistered dynamic diffuse optical tomography and digital breast tomosynthesis.
    Zimmermann BB; Deng B; Singh B; Martino M; Selb J; Fang Q; Sajjadi AY; Cormier J; Moore RH; Kopans DB; Boas DA; Saksena MA; Carp SA
    J Biomed Opt; 2017 Apr; 22(4):46008. PubMed ID: 28447102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and evaluation of a hybrid photoacoustic tomography and diffuse optical tomography system for breast cancer detection.
    Xi L; Li X; Yao L; Grobmyer S; Jiang H
    Med Phys; 2012 May; 39(5):2584-94. PubMed ID: 22559629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions.
    Xu RX; Young DC; Mao JJ; Povoski SP
    Breast Cancer Res; 2007; 9(6):R88. PubMed ID: 18088411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of tomosynthesis elastography in a breast-mimicking phantom.
    Engelken FJ; Sack I; Klatt D; Fischer T; Fallenberg EM; Bick U; Diekmann F
    Eur J Radiol; 2012 Sep; 81(9):2169-73. PubMed ID: 21724357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of using spatial frequency-domain imaging intraoperatively during tumor resection.
    Wirth D; Sibai M; Olson J; Wilson BC; Roberts DW; Paulsen K
    J Biomed Opt; 2018 Oct; 24(7):1-6. PubMed ID: 30378351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-infrared optical imaging of the breast with model-based reconstruction.
    Jiang H; Iftimia NV; Xu Y; Eggert JA; Fajardo LL; Klove KL
    Acad Radiol; 2002 Feb; 9(2):186-94. PubMed ID: 11918371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of thin poly(dimethylsiloxane)-based tissue-simulating phantoms with tunable reduced scattering and absorption coefficients at visible and near-infrared wavelengths.
    Greening GJ; Istfan R; Higgins LM; Balachandran K; Roblyer D; Pierce MC; Muldoon TJ
    J Biomed Opt; 2014; 19(11):115002. PubMed ID: 25387084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial frequency domain imager based on a compact multiaperture camera: testing and feasibility for noninvasive burn severity assessment.
    Kennedy G; Kagawa K; Rowland R; Ponticorvo A; Tanida J; Durkin AJ
    J Biomed Opt; 2021 Aug; 26(8):. PubMed ID: 34387050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shortwave infrared spatial frequency domain imaging for non-invasive measurement of tissue and blood optical properties.
    Pilvar A; Plutzky J; Pierce M; Roblyer D
    J Biomed Opt; 2022 Jun; 27(6):. PubMed ID: 35715883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Fiber Diffuse Reflectance Spectroscopy and Spatial Frequency Domain Imaging in Surgery Guidance: A Study on Optical Phantoms.
    Tseregorodtseva PS; Buiankin KE; Yakimov BP; Kamalov AA; Budylin GS; Shirshin EA
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional multi-frequency imaging of a tumor inclusion in a homogeneous breast phantom using the harmonic motion Doppler imaging method.
    Tafreshi AK; Top CB; Gençer NG
    Phys Med Biol; 2017 Jun; 62(12):4852-4869. PubMed ID: 28151726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-infrared fluorescent dyes for enhanced contrast in optical mammography: phantom experiments.
    Ebert B; Sukowski U; Grosenick D; Wabnitz H; Moesta KT; Licha K; Becker A; Semmler W; Schlag PM; Rinneberg H
    J Biomed Opt; 2001 Apr; 6(2):134-40. PubMed ID: 11375722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.