These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 2883185)
1. Direct evidence for two distinct prosomatostatin converting enzymes. Detection using a rapid, sensitive, and specific assay for propeptide converting enzymes. Mackin RB; Noe BD J Biol Chem; 1987 May; 262(14):6453-6. PubMed ID: 2883185 [TBL] [Abstract][Full Text] [Related]
2. Post-translational processing of anglerfish islet somatostatin precursors. Noe BD; Spiess J Adv Exp Med Biol; 1985; 188():123-40. PubMed ID: 2863927 [TBL] [Abstract][Full Text] [Related]
4. The anglerfish somatostatin-28-generating propeptide converting enzyme is an aspartyl protease. Mackin RB; Noe BD; Spiess J Endocrinology; 1991 Oct; 129(4):1951-7. PubMed ID: 1680672 [TBL] [Abstract][Full Text] [Related]
5. Purified yeast aspartic protease 3 cleaves anglerfish pro-somatostatin I and II at di- and monobasic sites to generate somatostatin-14 and -28. Cawley NX; Noe BD; Loh YP FEBS Lett; 1993 Oct; 332(3):273-6. PubMed ID: 8104828 [TBL] [Abstract][Full Text] [Related]
6. Cotranslational and posttranslational proteolytic processing of preprosomatostatin-I in intact islet tissue. Noe BD; Andrews PC; Dixon JE; Spiess J J Cell Biol; 1986 Oct; 103(4):1205-11. PubMed ID: 2876999 [TBL] [Abstract][Full Text] [Related]
7. Comparison of prohormone-processing activities in islet microsomes and secretory granules: evidence for distinct converting enzymes for separate islet prosomatostatins. Noe BD; Debo G; Spiess J J Cell Biol; 1984 Aug; 99(2):578-87. PubMed ID: 6146629 [TBL] [Abstract][Full Text] [Related]
8. Proteolytic events in the post-translational processing of somatostatin precursors from rat brain cortex and anglerfish pancreatic islets. Cohen P; Morel A; Gluschankof P; Gomez S; Nicolas P Adv Exp Med Biol; 1985; 188():109-21. PubMed ID: 2863926 [TBL] [Abstract][Full Text] [Related]
9. Separate cell types that express two different forms of somatostatin in anglerfish islets can be immunohistochemically differentiated. McDonald JK; Greiner F; Bauer GE; Elde RP; Noe BD J Histochem Cytochem; 1987 Feb; 35(2):155-62. PubMed ID: 2878951 [TBL] [Abstract][Full Text] [Related]
10. Characterization of an endoprotease from rat small intestinal mucosal secretory granules which generates somatostatin-28 from prosomatostatin by cleavage after a single arginine residue. Beinfeld MC; Bourdais J; Kuks P; Morel A; Cohen P J Biol Chem; 1989 Mar; 264(8):4460-5. PubMed ID: 2564394 [TBL] [Abstract][Full Text] [Related]
11. Characterization of proinsulin- and proglucagon-converting activities in isolated islet secretory granules. Fletcher DJ; Quigley JP; Bauer GE; Noe BD J Cell Biol; 1981 Aug; 90(2):312-22. PubMed ID: 7026570 [TBL] [Abstract][Full Text] [Related]
12. Anglerfish pancreatic islets produce two forms of somatostatin-28. Spiess J; Noe BD Adv Exp Med Biol; 1985; 188():141-54. PubMed ID: 2863928 [TBL] [Abstract][Full Text] [Related]
13. Processing of an anglerfish somatostatin precursor to a hydroxylysine-containing somatostatin 28. Spiess J; Noe BD Proc Natl Acad Sci U S A; 1985 Jan; 82(2):277-81. PubMed ID: 2857489 [TBL] [Abstract][Full Text] [Related]
14. Amino-terminal sequences of prosomatostatin direct intracellular targeting but not processing specificity. Sevarino KA; Stork P; Ventimiglia R; Mandel G; Goodman RH Cell; 1989 Apr; 57(1):11-9. PubMed ID: 2564811 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous assessment of prohormone transport and processing in four separate islet cell types: a combined autoradiographic and biochemical study. Noe BD; Amherdt M; Perrelet A; Orci L Pancreas; 1988; 3(6):700-13. PubMed ID: 2906125 [TBL] [Abstract][Full Text] [Related]
16. Heterologous processing of prosomatostatin in constitutive and regulated secretory pathways. Putative role of the endoproteases furin, PC1, and PC2. Galanopoulou AS; Kent G; Rabbani SN; Seidah NG; Patel YC J Biol Chem; 1993 Mar; 268(8):6041-9. PubMed ID: 8095501 [TBL] [Abstract][Full Text] [Related]
17. Preferential cleavage of des-31,32-proinsulin over intact proinsulin by the insulin secretory granule type II endopeptidase. Implication of a favored route for prohormone processing. Rhodes CJ; Lincoln B; Shoelson SE J Biol Chem; 1992 Nov; 267(32):22719-27. PubMed ID: 1429623 [TBL] [Abstract][Full Text] [Related]
18. Prosomatostatin II processing is initiated in the trans-Golgi network of anglerfish pancreatic cells. Bourdais J; Devilliers G; Girard R; Morel A; Benedetti L; Cohen P Biochem Biophys Res Commun; 1990 Aug; 170(3):1263-72. PubMed ID: 1975170 [TBL] [Abstract][Full Text] [Related]
19. The complete amino-acid sequence of anglerfish somatostatin-28 II. A new octacosapeptide containing the (Tyr7, Gly10) derivative of somatostatin-14 I. Morel A; Chang JY; Cohen P FEBS Lett; 1984 Sep; 175(1):21-4. PubMed ID: 6148264 [TBL] [Abstract][Full Text] [Related]
20. Characterization of a somatostatin-28 containing the (Tyr-7, Gly-10) derivative of somatostatin-14: a terminal active product of prosomatostatin II processing in anglerfish pancreatic islets. Morel A; Gluschankof P; Gomez S; Fafeur V; Cohen P Proc Natl Acad Sci U S A; 1984 Nov; 81(22):7003-6. PubMed ID: 6150481 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]