These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

598 related articles for article (PubMed ID: 28831965)

  • 1. A comparative analysis of vehicle-related greenhouse gas emissions between organic and conventional dairy production.
    Aggestam V; Buick J
    J Dairy Res; 2017 Aug; 84(3):360-369. PubMed ID: 28831965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of feed demand on greenhouse gas emissions and farm profitability for organic and conventional dairy farms.
    Kiefer L; Menzel F; Bahrs E
    J Dairy Sci; 2014 Dec; 97(12):7564-74. PubMed ID: 25468708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Invited review: Sustainable forage and grain crop production for the US dairy industry.
    Martin NP; Russelle MP; Powell JM; Sniffen CJ; Smith SI; Tricarico JM; Grant RJ
    J Dairy Sci; 2017 Dec; 100(12):9479-9494. PubMed ID: 28987574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of feed-related farm characteristics on relative values of genetic traits in dairy cows to reduce greenhouse gas emissions along the chain.
    Van Middelaar CE; Berentsen PB; Dijkstra J; Van Arendonk JA; De Boer IJ
    J Dairy Sci; 2015 Jul; 98(7):4889-903. PubMed ID: 25912865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon footprint of Canadian dairy products: calculations and issues.
    Vergé XP; Maxime D; Dyer JA; Desjardins RL; Arcand Y; Vanderzaag A
    J Dairy Sci; 2013 Sep; 96(9):6091-104. PubMed ID: 23831091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of feeding strategies and cropping systems on greenhouse gas emission from Wisconsin certified organic dairy farms.
    Liang D; Sun F; Wattiaux MA; Cabrera VE; Hedtcke JL; Silva EM
    J Dairy Sci; 2017 Jul; 100(7):5957-5973. PubMed ID: 28501399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life cycle energy and greenhouse gas analysis of a large-scale vertically integrated organic dairy in the United States.
    Heller MC; Keoleian GA
    Environ Sci Technol; 2011 Mar; 45(5):1903-10. PubMed ID: 21348530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating the impact of clinical mastitis in dairy cows on greenhouse gas emissions using a dynamic stochastic simulation model: a case study.
    Mostert PF; Bokkers EAM; de Boer IJM; van Middelaar CE
    Animal; 2019 Dec; 13(12):2913-2921. PubMed ID: 31210122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feeding strategies and manure management for cost-effective mitigation of greenhouse gas emissions from dairy farms in Wisconsin.
    Dutreuil M; Wattiaux M; Hardie CA; Cabrera VE
    J Dairy Sci; 2014 Sep; 97(9):5904-17. PubMed ID: 24996278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The carbon footprint of integrated milk production and renewable energy systems - A case study.
    Vida E; Tedesco DEA
    Sci Total Environ; 2017 Dec; 609():1286-1294. PubMed ID: 28793397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods and consequences of including reduction in greenhouse gas emission in beef cattle multiple-trait selection.
    Barwick SA; Henzell AL; Herd RM; Walmsley BJ; Arthur PF
    Genet Sel Evol; 2019 Apr; 51(1):18. PubMed ID: 31035930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate mitigation by dairy intensification depends on intensive use of spared grassland.
    Styles D; Gonzalez-Mejia A; Moorby J; Foskolos A; Gibbons J
    Glob Chang Biol; 2018 Feb; 24(2):681-693. PubMed ID: 28940511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Greenhouse gas, water, and land footprint per unit of production of the California dairy industry over 50 years.
    Naranjo A; Johnson A; Rossow H; Kebreab E
    J Dairy Sci; 2020 Apr; 103(4):3760-3773. PubMed ID: 32037166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding variability in carbon footprint of smallholder dairy farms in the central highlands of Ethiopia.
    Feyissa AA; Senbeta F; Diriba D; Tolera A
    Trop Anim Health Prod; 2022 Dec; 54(6):411. PubMed ID: 36456660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trends in greenhouse gas emissions from consumption and production of animal food products - implications for long-term climate targets.
    Cederberg C; Hedenus F; Wirsenius S; Sonesson U
    Animal; 2013 Feb; 7(2):330-40. PubMed ID: 23031741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal, spatial, and management variability in the carbon footprint of New Zealand milk.
    Ledgard SF; Falconer SJ; Abercrombie R; Philip G; Hill JP
    J Dairy Sci; 2020 Jan; 103(1):1031-1046. PubMed ID: 31759588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A case study of the carbon footprint of milk from high-performing confinement and grass-based dairy farms.
    O'Brien D; Capper JL; Garnsworthy PC; Grainger C; Shalloo L
    J Dairy Sci; 2014 Mar; 97(3):1835-51. PubMed ID: 24440256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Life-cycle assessment of greenhouse gas emissions from dairy production in Eastern Canada: a case study.
    Mc Geough EJ; Little SM; Janzen HH; McAllister TA; McGinn SM; Beauchemin KA
    J Dairy Sci; 2012 Sep; 95(9):5164-5175. PubMed ID: 22916922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the European small ruminant dairy sector in stabilising global temperatures: lessons from GWP* warming-equivalent emission metrics.
    Del Prado A; Manzano P; Pardo G
    J Dairy Res; 2021 Feb; 88(1):8-15. PubMed ID: 33663634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of greenhouse gas emissions from feed supply chains by utilizing regionally produced protein sources: the case of Austrian dairy production.
    Hörtenhuber SJ; Lindenthal T; Zollitsch W
    J Sci Food Agric; 2011 Apr; 91(6):1118-27. PubMed ID: 21308691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.