These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 28832015)

  • 1. Effect of Mo on the phase stability and elastic mechanical properties of Ti-Mo random alloys from ab initio calculations.
    Cao P; Tian F; Wang Y
    J Phys Condens Matter; 2017 Nov; 29(43):435703. PubMed ID: 28832015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications.
    Zhao X; Niinomi M; Nakai M; Hieda J
    Acta Biomater; 2012 May; 8(5):1990-7. PubMed ID: 22326686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between various deformation-induced products and mechanical properties in metastable Ti-30Zr-Mo alloys for biomedical applications.
    Zhao X; Niinomi M; Nakai M
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):2009-16. PubMed ID: 22098900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformation-induced changeable Young's modulus with high strength in β-type Ti-Cr-O alloys for spinal fixture.
    Liu H; Niinomi M; Nakai M; Hieda J; Cho K
    J Mech Behav Biomed Mater; 2014 Feb; 30():205-13. PubMed ID: 24317494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructures and mechanical properties of metastable Ti-30Zr-(Cr, Mo) alloys with changeable Young's modulus for spinal fixation applications.
    Zhao X; Niinomi M; Nakai M; Miyamoto G; Furuhara T
    Acta Biomater; 2011 Aug; 7(8):3230-6. PubMed ID: 21569873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metastable Zr-Nb alloys for spinal fixation rods with tunable Young's modulus and low magnetic resonance susceptibility.
    Zhao XL; Li L; Niinomi M; Nakai M; Zhang DL; Suryanarayana C
    Acta Biomater; 2017 Oct; 62():372-384. PubMed ID: 28827184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab initio calculations of mechanical properties of bcc W-Re-Os random alloys: effects of transmutation of W.
    Li X; Schönecker S; Li R; Li X; Wang Y; Zhao J; Johansson B; Vitos L
    J Phys Condens Matter; 2016 Jul; 28(29):295501. PubMed ID: 27255428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First principles computation of composition dependent elastic constants of omega in titanium alloys: implications on mechanical behavior.
    Salloom R; Mantri SA; Banerjee R; Srinivasan SG
    Sci Rep; 2021 Jun; 11(1):12005. PubMed ID: 34099841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of phase transformations on dynamical elastic modulus and anelasticity of beta Ti-Nb-Fe alloys for biomedical applications.
    Chaves JM; Florêncio O; Silva PS; Marques PW; Afonso CR
    J Mech Behav Biomed Mater; 2015 Jun; 46():184-96. PubMed ID: 25796065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastic softening of β-type Ti-Nb alloys by indium (In) additions.
    Calin M; Helth A; Gutierrez Moreno JJ; Bönisch M; Brackmann V; Giebeler L; Gemming T; Lekka CE; Gebert A; Schnettler R; Eckert J
    J Mech Behav Biomed Mater; 2014 Nov; 39():162-74. PubMed ID: 25128870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Sn addition on the microstructure and superelasticity in Ti-Nb-Mo-Sn alloys.
    Zhang DC; Yang S; Wei M; Mao YF; Tan CG; Lin JG
    J Mech Behav Biomed Mater; 2012 Sep; 13():156-65. PubMed ID: 22842657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of Cr content of metastable β-type Ti-Cr alloys with changeable Young's modulus for spinal fixation applications.
    Zhao X; Niinomi M; Nakai M; Hieda J; Ishimoto T; Nakano T
    Acta Biomater; 2012 Jul; 8(6):2392-400. PubMed ID: 22342893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study of the mechanical properties of CrFeCoNiMo
    Liu Y; Wang K; Xiao H; Chen G; Wang Z; Hu T; Fan T; Ma L
    RSC Adv; 2020 Apr; 10(24):14080-14088. PubMed ID: 35498461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First principles theoretical investigations of low Young's modulus beta Ti-Nb and Ti-Nb-Zr alloys compositions for biomedical applications.
    Karre R; Niranjan MK; Dey SR
    Mater Sci Eng C Mater Biol Appl; 2015 May; 50():52-8. PubMed ID: 25746245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties and cytocompatibility of oxygen-modified β-type Ti-Cr alloys for spinal fixation devices.
    Liu H; Niinomi M; Nakai M; Cho K; Narita K; Şen M; Shiku H; Matsue T
    Acta Biomater; 2015 Jan; 12():352-361. PubMed ID: 25449914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation and Thermal Stability of the ω-Phase in Ti-Nb and Ti-Mo Alloys Subjected to HPT.
    Korneva A; Straumal B; Gornakova A; Kilmametov A; Gondek Ł; Lityńska-Dobrzyńska L; Chulist R; Pomorska M; Zięba P
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape memory effect and aging behavior of Bi-added Ti-Cr alloys for biomedical applications.
    Nohira N; Hayashi K; Tahara M; Hosoda H
    J Mech Behav Biomed Mater; 2023 May; 141():105800. PubMed ID: 36996526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatigue properties of a metastable beta-type titanium alloy with reversible phase transformation.
    Li SJ; Cui TC; Hao YL; Yang R
    Acta Biomater; 2008 Mar; 4(2):305-17. PubMed ID: 18006397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructure and mechanical properties of a newly developed low Young's modulus Ti-15Zr-5Cr-2Al biomedical alloy.
    Wang P; Wu L; Feng Y; Bai J; Zhang B; Song J; Guan S
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():536-542. PubMed ID: 28024619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructure and mechanical properties of Ti-Zr-Cr biomedical alloys.
    Wang P; Feng Y; Liu F; Wu L; Guan S
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():148-52. PubMed ID: 25842119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.