These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 2883210)

  • 1. Differential regulation of regional vascular resistance by the rostral and caudal ventrolateral medulla in the rat.
    Willette RN; Punnen-Grandy S; Krieger AJ; Sapru HN
    J Auton Nerv Syst; 1987 Feb; 18(2):143-51. PubMed ID: 2883210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in regional vascular resistance in response to microinjection of L-glutamate into different antero-posterior coordinates of the RVLM in awake rats.
    de Paula PM; Machado BH
    Auton Neurosci; 2000 Aug; 82(3):137-45. PubMed ID: 11023620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemodynamic effects elicited by stimulation of the nucleus tractus solitarii.
    Yin M; Lee CC; Ohta H; Talman WT
    Hypertension; 1994 Jan; 23(1 Suppl):I73-7. PubMed ID: 7904259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of pressor mechanisms from the NTS and CVLM in control of arterial pressure.
    Moreira TS; Sato MA; Takakura AC; Menani JV; Colombari E
    Am J Physiol Regul Integr Comp Physiol; 2005 Nov; 289(5):R1416-25. PubMed ID: 16051722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adrenal epinephrine secretion is not regulated by sympathoinhibitory neurons in the caudal ventrolateral medulla.
    Natarajan M; Morrison SF
    Brain Res; 1999 May; 827(1-2):169-75. PubMed ID: 10320706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in regional vascular resistance in response to microinjection of L-glutamate into different antero-posterior coordinates of the RVLM in awake rats.
    de Paula PM; Machado BH
    Auton Neurosci; 2001 Mar; 87(2-3):301-9. PubMed ID: 11476293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The sympathoinhibitory effects of systemic cholecystokinin are dependent on neurons in the caudal ventrolateral medulla in the rat.
    Sartor DM; Verberne AJ
    Am J Physiol Regul Integr Comp Physiol; 2006 Nov; 291(5):R1390-8. PubMed ID: 16793934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tonic glutamate-mediated control of rostral ventrolateral medulla and sympathetic vasomotor tone.
    Ito S; Sved AF
    Am J Physiol; 1997 Aug; 273(2 Pt 2):R487-94. PubMed ID: 9277530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of non-NMDA and NMDA receptors in glutamate-induced pressor or depressor responses of the pons and medulla.
    Chen SY; Wu WC; Tseng CJ; Kuo JS; Chai CY
    Clin Exp Pharmacol Physiol; 1997 Jan; 24(1):46-56. PubMed ID: 9043805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systemic cholecystokinin differentially affects baro-activated GABAergic neurons in rat caudal ventrolateral medulla.
    Mobley SC; Mandel DA; Schreihofer AM
    J Neurophysiol; 2006 Nov; 96(5):2760-8. PubMed ID: 16914615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ipsilateral but not contralateral blockade of excitatory amino acid receptors in the caudal ventrolateral medulla inhibits aortic baroreceptor reflex in rats.
    Kubo T; Kihara M; Misu Y
    Naunyn Schmiedebergs Arch Pharmacol; 1991 Jan; 343(1):46-51. PubMed ID: 1674361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential control of vasomotion by angiotensins in the rostral ventrolateral medulla of hypertensive rats.
    Ferreira PM; Xavier CH; Alzamora AC; Santos RA; Campagnole-Santos MJ
    Neuropeptides; 2015 Oct; 53():11-8. PubMed ID: 26390943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential regional hemodynamic changes produced by L-glutamate stimulation of the locus coeruleus.
    Miyawaki T; Kawamura H; Hara K; Suzuki K; Usui W; Yasugi T
    Brain Res; 1993 Jan; 600(1):56-62. PubMed ID: 8093676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased GABA(A) inhibition of the RVLM after hindlimb unloading in rats.
    Moffitt JA; Heesch CM; Hasser EM
    Am J Physiol Regul Integr Comp Physiol; 2002 Sep; 283(3):R604-14. PubMed ID: 12184994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The rostral and caudal ventrolateral medulla in young spontaneously hypertensive rats.
    Smith JK; Barron KW
    Brain Res; 1990 Jan; 506(1):153-8. PubMed ID: 1967962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentiated hemodynamic changes controlled by splanchnic nerve.
    Sato MA; Morrison SF; Lopes OU; Colombari E
    Auton Neurosci; 2006 Jun; 126-127():202-10. PubMed ID: 16567132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subregions of rostral ventral medulla control arterial pressure and regional hemodynamics.
    Cox BF; Brody MJ
    Am J Physiol; 1989 Sep; 257(3 Pt 2):R635-40. PubMed ID: 2782466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiovascular effects of L-glutamate and tetrodotoxin microinjected into the rostral and caudal ventrolateral medulla in normotensive and spontaneously hypertensive rats.
    Smith JK; Barron KW
    Brain Res; 1990 Jan; 506(1):1-8. PubMed ID: 1967961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurons in rostral VLM are inhibited by chemical stimulation of caudal VLM in rats.
    Agarwal SK; Gelsema AJ; Calaresu FR
    Am J Physiol; 1989 Aug; 257(2 Pt 2):R265-70. PubMed ID: 2764151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of the sympathetic response to acute hypoxia by the caudal ventrolateral medulla in rats.
    Mandel DA; Schreihofer AM
    J Physiol; 2009 Jan; 587(2):461-75. PubMed ID: 19047207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.