These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 28832338)

  • 1. Nanoscale electromechanical and electronic properties of free-standing ZnO nano- and microstructured platelets.
    Faraji N; Adelung R; Mishra YK; Seidel J
    Nanotechnology; 2017 Oct; 28(40):405701. PubMed ID: 28832338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale investigation of charge transport at the grain boundaries and wrinkles in graphene film.
    Ahmad M; An H; Kim YS; Lee JH; Jung J; Chun SH; Seo Y
    Nanotechnology; 2012 Jul; 23(28):285705. PubMed ID: 22728533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wafer-scale single-domain-like graphene by defect-selective atomic layer deposition of hexagonal ZnO.
    Park KS; Kim S; Kim H; Kwon D; Lee YE; Min SW; Im S; Choi HJ; Lim S; Shin H; Koo SM; Sung MM
    Nanoscale; 2015 Nov; 7(42):17702-9. PubMed ID: 26452020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local resistance switching at grain and grain boundary surfaces of polycrystalline tungsten oxide films.
    Shang DS; Shi L; Sun JR; Shen BG
    Nanotechnology; 2011 Jun; 22(25):254008. PubMed ID: 21572213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bragg coherent diffractive imaging of single-grain defect dynamics in polycrystalline films.
    Yau A; Cha W; Kanan MW; Stephenson GB; Ulvestad A
    Science; 2017 May; 356(6339):739-742. PubMed ID: 28522531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conductive Nature of Grain Boundaries in Nanocrystalline Stabilized Bi
    Jeong SJ; Kwak NW; Byeon P; Chung SY; Jung W
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6269-6275. PubMed ID: 29369610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local electrical conduction in polycrystalline La-doped BiFeO₃ thin films.
    Zhou MX; Chen B; Sun HB; Wan JG; Li ZW; Liu JM; Song FQ; Wang GH
    Nanotechnology; 2013 Jun; 24(22):225702. PubMed ID: 23637078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced ionic conductivity in electroceramics by nanoscale enrichment of grain boundaries with high solute concentration.
    Bowman WJ; Kelly MN; Rohrer GS; Hernandez CA; Crozier PA
    Nanoscale; 2017 Nov; 9(44):17293-17302. PubMed ID: 29090719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Imaging of Dopant Distribution in Polycrystalline ZnO Films.
    Lorenzo F; Aebersold AB; Morales-Masis M; Ledinský M; Escrig S; Vetushka A; Alexander DT; Hessler-Wyser A; Fejfar A; Hébert C; Nicolay S; Ballif C
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7241-7248. PubMed ID: 28151638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear electrical grain boundary properties in proton conducting Y-BaZrO3 supporting the space charge depletion model.
    Shirpour M; Merkle R; Lin CT; Maier J
    Phys Chem Chem Phys; 2012 Jan; 14(2):730-40. PubMed ID: 22108574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local piezoelectric properties of ZnO thin films prepared by RF-plasma-assisted pulsed-laser deposition method.
    Bdikin IK; Gracio J; Ayouchi R; Schwarz R; Kholkin AL
    Nanotechnology; 2010 Jun; 21(23):235703. PubMed ID: 20463382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defect structure-electronic property correlations in transition metal dichalcogenide grain boundaries.
    Somay S; Balasubramanian K
    Phys Chem Chem Phys; 2024 Jul; 26(29):19787-19794. PubMed ID: 38985158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. YSZ thin films with minimized grain boundary resistivity.
    Mills EM; Kleine-Boymann M; Janek J; Yang H; Browning ND; Takamura Y; Kim S
    Phys Chem Chem Phys; 2016 Apr; 18(15):10486-91. PubMed ID: 27030391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photo-enhanced ionic conductivity across grain boundaries in polycrystalline ceramics.
    Defferriere T; Klotz D; Gonzalez-Rosillo JC; Rupp JLM; Tuller HL
    Nat Mater; 2022 Apr; 21(4):438-444. PubMed ID: 35027718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revealing Nanoscale Chemical Heterogeneities in Polycrystalline Mo-BiVO
    Eichhorn J; Reyes-Lillo SE; Roychoudhury S; Sallis S; Weis J; Larson DM; Cooper JK; Sharp ID; Prendergast D; Toma FM
    Small; 2020 Sep; 16(35):e2001600. PubMed ID: 32755006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grain boundary passivation via balancing feedback of hole barrier modulation in HfO
    Kim YS; Chung H; Kwon S; Kim J; Jo W
    Nano Converg; 2022 Sep; 9(1):43. PubMed ID: 36180643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced electrical properties at boundaries including twin boundaries of polycrystalline CdTe thin-film solar cells.
    Li H; Liu XX; Lin YS; Yang B; Du ZM
    Phys Chem Chem Phys; 2015 May; 17(17):11150-5. PubMed ID: 25857742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing grain boundary ionic conductivity in mixed ionic-electronic conductors.
    Lin Y; Fang S; Su D; Brinkman KS; Chen F
    Nat Commun; 2015 Apr; 6():6824. PubMed ID: 25857355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical sensing with switchable transport channels in graphene grain boundaries.
    Yasaei P; Kumar B; Hantehzadeh R; Kayyalha M; Baskin A; Repnin N; Wang C; Klie RF; Chen YP; Král P; Salehi-Khojin A
    Nat Commun; 2014 Sep; 5():4911. PubMed ID: 25241799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variability and origins of grain boundary electric potential detected by electron holography and atom-probe tomography.
    Xu X; Liu Y; Wang J; Isheim D; Dravid VP; Phatak C; Haile SM
    Nat Mater; 2020 Aug; 19(8):887-893. PubMed ID: 32284599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.