These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 28832647)

  • 1. Transcriptional responses of ecologically diverse Drosophila species to larval diets differing in relative sugar and protein ratios.
    Nazario-Yepiz NO; Loustalot-Laclette MR; Carpinteyro-Ponce J; Abreu-Goodger C; Markow TA
    PLoS One; 2017; 12(8):e0183007. PubMed ID: 28832647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dietary protein and sugar differentially affect development and metabolic pools in ecologically diverse Drosophila.
    Matzkin LM; Johnson S; Paight C; Bozinovic G; Markow TA
    J Nutr; 2011 Jun; 141(6):1127-33. PubMed ID: 21525254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipidomic profiles of Drosophila melanogaster and cactophilic fly species: models of human metabolic diseases.
    Cázarez-García D; Ramírez Loustalot-Laclette M; Ann Markow T; Winkler R
    Integr Biol (Camb); 2017 Nov; 9(11):885-891. PubMed ID: 29043354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecological genomics of host shifts in Drosophila mojavensis.
    Matzkin LM
    Adv Exp Med Biol; 2014; 781():233-47. PubMed ID: 24277303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drosophila development, physiology, behavior, and lifespan are influenced by altered dietary composition.
    Ormerod KG; LePine OK; Abbineni PS; Bridgeman JM; Coorssen JR; Mercier AJ; Tattersall GJ
    Fly (Austin); 2017 Jul; 11(3):153-170. PubMed ID: 28277941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of volatiles of necrotic Stenocereus thurberi and Opuntia littoralis and toxicity and olfactory preference of Drosophila melanogster, D. mojavensis wrigleyi, and D. mojavensis sonorensis to necrotic cactus volatiles.
    Wright CR; Setzer WN
    Nat Prod Commun; 2014 Aug; 9(8):1185-92. PubMed ID: 25233605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drosophila females trade off good nutrition with high-quality oviposition sites when choosing foods.
    Lihoreau M; Poissonnier LA; Isabel G; Dussutour A
    J Exp Biol; 2016 Aug; 219(Pt 16):2514-24. PubMed ID: 27284071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary relationships of Drosophila mojavensis geographic host races and their sister species Drosophila arizonae.
    Reed LK; Nyboer M; Markow TA
    Mol Ecol; 2007 Mar; 16(5):1007-22. PubMed ID: 17305857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sexually dimorphic effects of dietary sugar on lifespan, feeding and starvation resistance in
    Chandegra B; Tang JLY; Chi H; Alic N
    Aging (Albany NY); 2017 Dec; 9(12):2521-2528. PubMed ID: 29207375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drosophila melanogaster larvae make nutritional choices that minimize developmental time.
    Rodrigues MA; Martins NE; Balancé LF; Broom LN; Dias AJ; Fernandes AS; Rodrigues F; Sucena É; Mirth CK
    J Insect Physiol; 2015 Oct; 81():69-80. PubMed ID: 26149766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How well do specialist feeders regulate nutrient intake? Evidence from a gregarious tree-feeding caterpillar.
    Despland E; Noseworthy M
    J Exp Biol; 2006 Apr; 209(Pt 7):1301-9. PubMed ID: 16547301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparisons of yeast florae from natural substrates and larval guts of southwestern Drosophila.
    Fogleman JC; Starmer WT; Heed WB
    Oecologia; 1982 Feb; 52(2):187-191. PubMed ID: 28310506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Synthetic Diets Enriched in Specific Nutrients on Drosophila Development, Body Fat, and Lifespan.
    Reis T
    PLoS One; 2016; 11(1):e0146758. PubMed ID: 26741692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dietary protein:carbohydrate balance is a critical modulator of lifespan and reproduction in Drosophila melanogaster: a test using a chemically defined diet.
    Lee KP
    J Insect Physiol; 2015 Apr; 75():12-9. PubMed ID: 25728576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic thermoprotection in a desert-dwelling Drosophila species.
    Newman AE; Xiao C; Robertson RM
    J Neurobiol; 2005 Aug; 64(2):170-80. PubMed ID: 15818554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptation to new nutritional environments: larval performance, foraging decisions, and adult oviposition choices in Drosophila suzukii.
    Silva-Soares NF; Nogueira-Alves A; Beldade P; Mirth CK
    BMC Ecol; 2017 Jun; 17(1):21. PubMed ID: 28592264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-zygotic isolation in cactophilic Drosophila: larval viability and adult life-history traits of D. mojavensis/D. arizonae hybrids.
    Bono JM; Markow TA
    J Evol Biol; 2009 Jul; 22(7):1387-95. PubMed ID: 19508411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preadult parental diet affects offspring development and metabolism in Drosophila melanogaster.
    Matzkin LM; Johnson S; Paight C; Markow TA
    PLoS One; 2013; 8(3):e59530. PubMed ID: 23555695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional genomics of cactus host shifts in Drosophila mojavensis.
    Matzkin LM; Watts TD; Bitler BG; Machado CA; Markow TA
    Mol Ecol; 2006 Dec; 15(14):4635-43. PubMed ID: 17107489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parental dietary protein-to-carbohydrate ratio affects offspring lifespan and metabolism in drosophila.
    Strilbytska O; Velianyk V; Burdyliuk N; Yurkevych IS; Vaiserman A; Storey KB; Pospisilik A; Lushchak O
    Comp Biochem Physiol A Mol Integr Physiol; 2020 Mar; 241():110622. PubMed ID: 31765707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.