These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28832928)

  • 1. Variation in human gape cycle kinematics and occlusal topography.
    Laird MF
    Am J Phys Anthropol; 2017 Nov; 164(3):574-585. PubMed ID: 28832928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sources of variance in temporal and spatial aspects of jaw kinematics in two species of primates feeding on foods of different properties.
    Iriarte-Díaz J; Reed DA; Ross CF
    Integr Comp Biol; 2011 Aug; 51(2):307-19. PubMed ID: 21719431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Jaw kinematics and mandibular morphology in humans.
    Laird MF; Ross CF; O'Higgins P
    J Hum Evol; 2020 Feb; 139():102639. PubMed ID: 31841671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of food properties on chewing in pigs: Flexibility and stereotypy of jaw movements in a mammalian omnivore.
    Montuelle SJ; Olson RA; Curtis H; Beery S; Williams SH
    PLoS One; 2020; 15(2):e0228619. PubMed ID: 32032365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexibility of feeding movements in pigs: effects of changes in food toughness and stiffness on the timing of jaw movements.
    Montuelle SJ; Olson R; Curtis H; Sidote J; Williams SH
    J Exp Biol; 2018 Jan; 221(Pt 2):. PubMed ID: 29378880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chewing efficiency and occlusal functional morphology in modern humans.
    Laird MF; Vogel ER; Pontzer H
    J Hum Evol; 2016 Apr; 93():1-11. PubMed ID: 27086052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of particle size reduction on the jaw gape in human mastication.
    Van der Bilt A; Van der Glas HW; Olthoff LW; Bosman F
    J Dent Res; 1991 May; 70(5):931-7. PubMed ID: 2022777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional links between canine height and jaw gape in catarrhines with special reference to early hominins.
    Hylander WL
    Am J Phys Anthropol; 2013 Feb; 150(2):247-59. PubMed ID: 23280236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of temporal variation in human masticatory cycles during gum chewing.
    Crane EA; Rothman ED; Childers D; Gerstner GE
    Arch Oral Biol; 2013 Oct; 58(10):1464-74. PubMed ID: 23915677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of unilateral lingual nerve injury on the kinematics of mastication in pigs.
    Montuelle SJ; Olson RA; Curtis H; Sidote JV; Williams SH
    Arch Oral Biol; 2019 Feb; 98():226-237. PubMed ID: 30522042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor control of jaw muscles in chewing and in isometric biting with graded narrowing of jaw gape.
    Pröschel PA; Jamal T; Morneburg TR
    J Oral Rehabil; 2008 Oct; 35(10):722-8. PubMed ID: 18482344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of human jaw elevator muscle activity during simulated chewing with varying bolus size.
    Ottenhoff FA; van der Bilt A; van der Glas HW; Bosman F
    Exp Brain Res; 1993; 96(3):501-12. PubMed ID: 8299751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional mandibular kinematics of mastication in the marsupial
    Stilson KT; Luo ZX; Li P; Olson S; Ross CF
    Philos Trans R Soc Lond B Biol Sci; 2023 Dec; 378(1891):20220548. PubMed ID: 37839456
    [No Abstract]   [Full Text] [Related]  

  • 14. Jaw movements and muscle activity during mastication in growing rabbits.
    Weijs WA; Brugman P; Grimbergen CA
    Anat Rec; 1989 Jul; 224(3):407-16. PubMed ID: 2782624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic regulation of occlusal force because of hardness-change of the bite object.
    Shimada A; Tanaka M; Yamashita R; Noguchi K; Torisu T; Yamabe Y; Fujii H; Murata H
    J Oral Rehabil; 2008 Jan; 35(1):12-9. PubMed ID: 18053060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in jaw muscle activity and the physical properties of foods with different textures during chewing behaviors.
    Iguchi H; Magara J; Nakamura Y; Tsujimura T; Ito K; Inoue M
    Physiol Behav; 2015 Dec; 152(Pt A):217-24. PubMed ID: 26440319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Profile Electromagnetic Field Sensors in the Measurement and Modelling of Three-Dimensional Jaw Kinematics and Occlusal Loading.
    Woodford SC; Robinson DL; Edelmann C; Mehl A; Röhrle O; Vee Sin Lee P; Ackland DC
    Ann Biomed Eng; 2021 Jun; 49(6):1561-1571. PubMed ID: 33409850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chewing variation in lepidosaurs and primates.
    Ross CF; Baden AL; Georgi J; Herrel A; Metzger KA; Reed DA; Schaerlaeken V; Wolff MS
    J Exp Biol; 2010 Feb; 213(4):572-84. PubMed ID: 20118308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematics of lateral tongue-pushing movement in coordination with masticatory jaw movement: An anteroposterior projection videofluorographic study.
    Iida T; Matsuo K; Iida Y; Okazaki H; Yoda M; Taniguchi H; Brodsky MB; González-Fernández M; Palmer JB
    Physiol Behav; 2023 Oct; 270():114315. PubMed ID: 37536619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of gum hardness on chewing pattern.
    Plesh O; Bishop B; McCall W
    Exp Neurol; 1986 Jun; 92(3):502-12. PubMed ID: 3709730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.