These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 28833126)

  • 1. Visuo-manual tracking: does intermittent control with aperiodic sampling explain linear power and non-linear remnant without sensorimotor noise?
    Gollee H; Gawthrop PJ; Lakie M; Loram ID
    J Physiol; 2017 Nov; 595(21):6751-6770. PubMed ID: 28833126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual control of stable and unstable loads: what is the feedback delay and extent of linear time-invariant control?
    Loram ID; Lakie M; Gawthrop PJ
    J Physiol; 2009 Mar; 587(Pt 6):1343-65. PubMed ID: 19171654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refractoriness in sustained visuo-manual control: is the refractory duration intrinsic or does it depend on external system properties?
    van de Kamp C; Gawthrop PJ; Gollee H; Loram ID
    PLoS Comput Biol; 2013; 9(1):e1002843. PubMed ID: 23300430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermittent control: a computational theory of human control.
    Gawthrop P; Loram I; Lakie M; Gollee H
    Biol Cybern; 2011 Feb; 104(1-2):31-51. PubMed ID: 21327829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive intermittent control: A computational model explaining motor intermittency observed in human behavior.
    Sakaguchi Y; Tanaka M; Inoue Y
    Neural Netw; 2015 Jul; 67():92-109. PubMed ID: 25897510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Periodic change in phase relationship between target and hand motion during visuo-manual tracking task: behavioral evidence for intermittent control.
    Inoue Y; Sakaguchi Y
    Hum Mov Sci; 2014 Feb; 33():211-26. PubMed ID: 24355067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-related differentiation of sensorimotor control strategies during pursuit and compensatory tracking.
    Heenan M; Scheidt RA; Beardsley SA
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3562-5. PubMed ID: 25570760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual feedback during motor performance is associated with increased complexity and adaptability of motor and neural output.
    Shafer RL; Solomon EM; Newell KM; Lewis MH; Bodfish JW
    Behav Brain Res; 2019 Dec; 376():112214. PubMed ID: 31494179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paired-pulse transcranial magnetic stimulation of primary somatosensory cortex differentially modulates perception and sensorimotor transformations.
    Meehan SK; Legon W; Staines WR
    Neuroscience; 2008 Nov; 157(2):424-31. PubMed ID: 18838111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beta-band activity and connectivity in sensorimotor and parietal cortex are important for accurate motor performance.
    Chung JW; Ofori E; Misra G; Hess CW; Vaillancourt DE
    Neuroimage; 2017 Jan; 144(Pt A):164-173. PubMed ID: 27746389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does the brain use sliding variables for the control of movements?
    Hanneton S; Berthoz A; Droulez J; Slotine JJ
    Biol Cybern; 1997 Dec; 77(6):381-93. PubMed ID: 9433753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal correlates of continuous manual tracking under varying visual movement feedback in a virtual reality environment.
    Limanowski J; Kirilina E; Blankenburg F
    Neuroimage; 2017 Feb; 146():81-89. PubMed ID: 27845254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensorimotor beta power reflects the precision-weighting afforded to sensory prediction errors.
    Palmer CE; Auksztulewicz R; Ondobaka S; Kilner JM
    Neuroimage; 2019 Oct; 200():59-71. PubMed ID: 31226494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human control of an inverted pendulum: is continuous control necessary? Is intermittent control effective? Is intermittent control physiological?
    Loram ID; Gollee H; Lakie M; Gawthrop PJ
    J Physiol; 2011 Jan; 589(Pt 2):307-24. PubMed ID: 21098004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manual tracking of visual targets by trained monkeys.
    Miall RC; Weir DJ; Stein JF
    Behav Brain Res; 1986 May; 20(2):185-201. PubMed ID: 3730133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Sensorimotor Model for Computing Intended Reach Trajectories.
    Üstün C
    PLoS Comput Biol; 2016 Mar; 12(3):e1004734. PubMed ID: 26985662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian optimal adaptation explains age-related human sensorimotor changes.
    Karmali F; Whitman GT; Lewis RF
    J Neurophysiol; 2018 Feb; 119(2):509-520. PubMed ID: 29118202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating three types of continuous auditory feedback in visuo-manual tracking.
    Boyer ÉO; Bevilacqua F; Susini P; Hanneton S
    Exp Brain Res; 2017 Mar; 235(3):691-701. PubMed ID: 27858128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel processing streams for motor output and sensory prediction during action preparation.
    Stenner MP; Bauer M; Heinze HJ; Haggard P; Dolan RJ
    J Neurophysiol; 2015 Mar; 113(6):1752-62. PubMed ID: 25540223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Within-session and between-session reproducibility of cerebral sensorimotor activation: a test--retest effect evidenced with functional magnetic resonance imaging.
    Loubinoux I; Carel C; Alary F; Boulanouar K; Viallard G; Manelfe C; Rascol O; Celsis P; Chollet F
    J Cereb Blood Flow Metab; 2001 May; 21(5):592-607. PubMed ID: 11333370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.