BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 28833173)

  • 1. Disruption of stomatal lineage signaling or transcriptional regulators has differential effects on mesophyll development, but maintains coordination of gas exchange.
    Dow GJ; Berry JA; Bergmann DC
    New Phytol; 2017 Oct; 216(1):69-75. PubMed ID: 28833173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Take a deep breath: peptide signalling in stomatal patterning and differentiation.
    Richardson LG; Torii KU
    J Exp Bot; 2013 Dec; 64(17):5243-51. PubMed ID: 23997204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The developmental relationship between stomata and mesophyll airspace.
    Baillie AL; Fleming AJ
    New Phytol; 2020 Feb; 225(3):1120-1126. PubMed ID: 31774175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effects of the peptides Stomagen, EPF1 and EPF2 on activation of MAP kinase MPK6 and the SPCH protein level.
    Jewaria PK; Hara T; Tanaka H; Kondo T; Betsuyaku S; Sawa S; Sakagami Y; Aimoto S; Kakimoto T
    Plant Cell Physiol; 2013 Aug; 54(8):1253-62. PubMed ID: 23686240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The plant stomatal lineage at a glance.
    Lee LR; Bergmann DC
    J Cell Sci; 2019 Apr; 132(8):. PubMed ID: 31028153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesophyll porosity is modulated by the presence of functional stomata.
    Lundgren MR; Mathers A; Baillie AL; Dunn J; Wilson MJ; Hunt L; Pajor R; Fradera-Soler M; Rolfe S; Osborne CP; Sturrock CJ; Gray JE; Mooney SJ; Fleming AJ
    Nat Commun; 2019 Jun; 10(1):2825. PubMed ID: 31249299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stomagen positively regulates stomatal density in Arabidopsis.
    Sugano SS; Shimada T; Imai Y; Okawa K; Tamai A; Mori M; Hara-Nishimura I
    Nature; 2010 Jan; 463(7278):241-4. PubMed ID: 20010603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structural correlations and the physiological functions of stomatal morphology and leaf structures in C
    Huang G; Yang Y; Zhu L; Ren X; Peng S; Li Y
    Planta; 2022 Jul; 256(2):39. PubMed ID: 35829784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-induced STOMAGEN-mediated stomatal development in Arabidopsis leaves.
    Hronková M; Wiesnerová D; Šimková M; Skůpa P; Dewitte W; Vráblová M; Zažímalová E; Šantrůček J
    J Exp Bot; 2015 Aug; 66(15):4621-30. PubMed ID: 26002974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auxin inhibits stomatal development through MONOPTEROS repression of a mobile peptide gene STOMAGEN in mesophyll.
    Zhang JY; He SB; Li L; Yang HQ
    Proc Natl Acad Sci U S A; 2014 Jul; 111(29):E3015-23. PubMed ID: 25002510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guard Cell Metabolism and Stomatal Function.
    Lawson T; Matthews J
    Annu Rev Plant Biol; 2020 Apr; 71():273-302. PubMed ID: 32155341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LLM-Domain B-GATA Transcription Factors Promote Stomatal Development Downstream of Light Signaling Pathways in Arabidopsis thaliana Hypocotyls.
    Klermund C; Ranftl QL; Diener J; Bastakis E; Richter R; Schwechheimer C
    Plant Cell; 2016 Mar; 28(3):646-60. PubMed ID: 26917680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential coordination of stomatal conductance, mesophyll conductance, and leaf hydraulic conductance in response to changing light across species.
    Xiong D; Douthe C; Flexas J
    Plant Cell Environ; 2018 Feb; 41(2):436-450. PubMed ID: 29220546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the mesophyll on stomatal responses in amphistomatous leaves.
    Mott KA; Peak D
    Plant Cell Environ; 2018 Dec; 41(12):2835-2843. PubMed ID: 30073677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of Arabidopsis stomatal development by plastoquinone oxidation.
    Zoulias N; Rowe J; Thomson EE; Dabrowska M; Sutherland H; Degen GE; Johnson MP; Sedelnikova SE; Hulmes GE; Hettema EH; Casson SA
    Curr Biol; 2021 Dec; 31(24):5622-5632.e7. PubMed ID: 34727522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behaviour.
    Lawson T; Simkin AJ; Kelly G; Granot D
    New Phytol; 2014 Sep; 203(4):1064-1081. PubMed ID: 25077787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Photosynthesis and Growth in atquac1 Knockout Mutants Are Due to Altered Organic Acid Accumulation and an Increase in Both Stomatal and Mesophyll Conductance.
    Medeiros DB; Martins SC; Cavalcanti JH; Daloso DM; Martinoia E; Nunes-Nesi A; DaMatta FM; Fernie AR; Araújo WL
    Plant Physiol; 2016 Jan; 170(1):86-101. PubMed ID: 26542441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SHORTROOT-Mediated Increase in Stomatal Density Has No Impact on Photosynthetic Efficiency.
    Schuler ML; Sedelnikova OV; Walker BJ; Westhoff P; Langdale JA
    Plant Physiol; 2018 Jan; 176(1):757-772. PubMed ID: 29127261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO
    Xiong D; Flexas J; Yu T; Peng S; Huang J
    New Phytol; 2017 Jan; 213(2):572-583. PubMed ID: 27653809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stomatal density is controlled by a mesophyll-derived signaling molecule.
    Kondo T; Kajita R; Miyazaki A; Hokoyama M; Nakamura-Miura T; Mizuno S; Masuda Y; Irie K; Tanaka Y; Takada S; Kakimoto T; Sakagami Y
    Plant Cell Physiol; 2010 Jan; 51(1):1-8. PubMed ID: 20007289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.