These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 28833274)

  • 1. Phonon spectra, electronic, and thermodynamic properties of WS
    Evarestov RA; Bandura AV; Porsev VV; Kovalenko AV
    J Comput Chem; 2017 Nov; 38(30):2581-2593. PubMed ID: 28833274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-Principles Calculations of Phonons and Thermodynamic Properties of Zr(Hf)S
    Domnin AV; Bandura AV; Evarestov RA
    J Comput Chem; 2020 Mar; 41(8):759-768. PubMed ID: 31828832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-principles modeling of hafnia-based nanotubes.
    Evarestov RA; Bandura AV; Porsev VV; Kovalenko AV
    J Comput Chem; 2017 Sep; 38(24):2088-2099. PubMed ID: 28618024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infrared and Raman active vibrational modes in MoS
    Evarestov RA; Bandura AV
    J Comput Chem; 2018 Oct; 39(26):2163-2172. PubMed ID: 30318757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of zone-folding approach to the first-principles estimation of thermodynamic properties of carbon and ZrS2 -based nanotubes.
    Bandura AV; Porsev VV; Evarestov RA
    J Comput Chem; 2016 Mar; 37(7):641-52. PubMed ID: 26519863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The calculations of phonon dispersion relations for single-wall carbon armchair and zigzag nanotubes.
    Wang Y; Zhang B; Jin Q; Li B; Ding D; Cao X
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(5):1149-52. PubMed ID: 17329162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature dependence of thermodynamic properties of MoS
    Bandura AV; Lukyanov SI; Evarestov RA
    J Mol Graph Model; 2018 Oct; 85():212-222. PubMed ID: 30227366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature dependence of strain energy and thermodynamic properties of V2 O5 -based single-walled nanotubes: Zone-folding approach.
    Porsev VV; Bandura AV; Evarestov RA
    J Comput Chem; 2016 Jun; 37(16):1442-50. PubMed ID: 26990664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-Principles Evaluation of the Morphology of WS
    Piskunov S; Lisovski O; Zhukovskii YF; D'yachkov PN; Evarestov RA; Kenmoe S; Spohr E
    ACS Omega; 2019 Jan; 4(1):1434-1442. PubMed ID: 31459410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theory of coherent phonons in carbon nanotubes and graphene nanoribbons.
    Sanders GD; Nugraha AR; Sato K; Kim JH; Kono J; Saito R; Stanton CJ
    J Phys Condens Matter; 2013 Apr; 25(14):144201. PubMed ID: 23478856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single mode phonon energy transmission in functionalized carbon nanotubes.
    Lee J; Varshney V; Roy AK; Farmer BL
    J Chem Phys; 2011 Sep; 135(10):104109. PubMed ID: 21932878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic investigations of the electron, phonon and elastic properties of monolayer M
    Luo Y; Cheng C; Chen HJ; Liu K; Zhou XL
    J Phys Condens Matter; 2019 Oct; 31(40):405703. PubMed ID: 31181557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of elastic wave dispersion relations to estimate thermal properties of nanoscale wires and tubes of varying wall thickness and diameter.
    Bifano MF; Kaul PB; Prakash V
    Nanotechnology; 2010 Jun; 21(23):235704. PubMed ID: 20472943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibrational Modes and Phonon and Thermodynamic Properties of the Metaboric Acid Polymorphs α-, β-, and γ-(BOH)
    da Silva MB; Santos RCR; Rodríguez Hernández JS; Caetano EWS; Freire VN
    J Phys Chem A; 2018 Sep; 122(38):7628-7645. PubMed ID: 30226385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. All-electron LCAO calculations of the LiF crystal phonon spectrum: Influence of the basis set, the exchange-correlation functional, and the supercell size.
    Evarestov RA; Losev MV
    J Comput Chem; 2009 Dec; 30(16):2645-55. PubMed ID: 19382176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-principle calculations of electronic, vibrational, and thermodynamic properties of 1,3-diamino-2,4,6-trinitrobenzene.
    Liu WH; Zeng W; Qin H; Jiang CL; Liu FS; Tang B; Lei YX; Liu QJ
    J Mol Model; 2019 Nov; 25(12):356. PubMed ID: 31768652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phonon vibrational frequencies of all single-wall carbon nanotubes at the lambda point: reduced matrix calculations.
    Wang Y; Wu Y; Feng M; Wang H; Jin Q; Ding D; Cao X
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(3):1102-5. PubMed ID: 18472297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and optical properties of WS
    Rahman MA; Yomogida Y; Ahad A; Ueji K; Nagano M; Ihara A; Nishidome H; Omoto M; Saito S; Miyata Y; Gao Y; Okada S; Yanagi K
    Sci Rep; 2023 Oct; 13(1):16959. PubMed ID: 37807007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manifestation of Structure of Electron Bands in Double-Resonant Raman Spectra of Single-Walled Carbon Nanotubes.
    Stubrov Y; Nikolenko A; Gubanov V; Strelchuk V
    Nanoscale Res Lett; 2016 Dec; 11(1):2. PubMed ID: 26729220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The optical response of monolayer, few-layer and bulk tungsten disulfide.
    Molas MR; Nogajewski K; Slobodeniuk AO; Binder J; Bartos M; Potemski M
    Nanoscale; 2017 Sep; 9(35):13128-13141. PubMed ID: 28849844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.