These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28833596)

  • 1. Room Temperature Electrochemical Sintering of Zn Microparticles and Its Use in Printable Conducting Inks for Bioresorbable Electronics.
    Lee YK; Kim J; Kim Y; Kwak JW; Yoon Y; Rogers JA
    Adv Mater; 2017 Oct; 29(38):. PubMed ID: 28833596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanically Milled Irregular Zinc Nanoparticles for Printable Bioresorbable Electronics.
    Mahajan BK; Yu X; Shou W; Pan H; Huang X
    Small; 2017 May; 13(17):. PubMed ID: 28218485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silver Nanoparticles Based Ink with Moderate Sintering in Flexible and Printed Electronics.
    Mo L; Guo Z; Yang L; Zhang Q; Fang Y; Xin Z; Chen Z; Hu K; Han L; Li L
    Int J Mol Sci; 2019 Apr; 20(9):. PubMed ID: 31036787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Printable Liquid Metal Microparticle Ink for Ultrastretchable Electronics.
    Li Y; Feng S; Cao S; Zhang J; Kong D
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50852-50859. PubMed ID: 33108172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Processing Techniques for Bioresorbable Nanoparticles in Fabricating Flexible Conductive Interconnects.
    Li J; Luo S; Liu J; Xu H; Huang X
    Materials (Basel); 2018 Jun; 11(7):. PubMed ID: 29958406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Layer Morphology and Ink Compatibility of Silver Nanoparticle Inkjet Inks for Near-Infrared Sintering.
    Reenaers D; Marchal W; Biesmans I; Nivelle P; D'Haen J; Deferme W
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32392730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Cost Manufacturing of Bioresorbable Conductors by Evaporation-Condensation-Mediated Laser Printing and Sintering of Zn Nanoparticles.
    Shou W; Mahajan BK; Ludwig B; Yu X; Staggs J; Huang X; Pan H
    Adv Mater; 2017 Jul; 29(26):. PubMed ID: 28436054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UV Curable Conductive Ink for the Fabrication of Textile-Based Conductive Circuits and Wearable UHF RFID Tags.
    Hong H; Hu J; Yan X
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27318-27326. PubMed ID: 31284718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conductive inks with a "built-in" mechanism that enables sintering at room temperature.
    Grouchko M; Kamyshny A; Mihailescu CF; Anghel DF; Magdassi S
    ACS Nano; 2011 Apr; 5(4):3354-9. PubMed ID: 21438563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conductive nanomaterials for printed electronics.
    Kamyshny A; Magdassi S
    Small; 2014 Sep; 10(17):3515-35. PubMed ID: 25340186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The exothermic reaction route of a self-heatable conductive ink for rapid processable printed electronics.
    Shin DY; Han JW; Chun S
    Nanoscale; 2014 Jan; 6(1):630-7. PubMed ID: 24253416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoalloy Printed and Pulse-Laser Sintered Flexible Sensor Devices with Enhanced Stability and Materials Compatibility.
    Zhao W; Rovere T; Weerawarne D; Osterhoudt G; Kang N; Joseph P; Luo J; Shim B; Poliks M; Zhong CJ
    ACS Nano; 2015 Jun; 9(6):6168-77. PubMed ID: 26034999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Printable conductive inks used for the fabrication of electronics: an overview.
    Dimitriou E; Michailidis N
    Nanotechnology; 2021 Oct; 32(50):. PubMed ID: 33735843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface and Interface Designs in Copper-Based Conductive Inks for Printed/Flexible Electronics.
    Tomotoshi D; Kawasaki H
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32867267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silver Ink Formulations for Sinter-free Printing of Conductive Films.
    Black K; Singh J; Mehta D; Sung S; Sutcliffe CJ; Chalker PR
    Sci Rep; 2016 Feb; 6():20814. PubMed ID: 26857286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air.
    Kanzaki M; Kawaguchi Y; Kawasaki H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formulation of Screen-Printable Cu Molecular Ink for Conductive/Flexible/Solderable Cu Traces.
    Deore B; Paquet C; Kell AJ; Lacelle T; Liu X; Mozenson O; Lopinski G; Brzezina G; Guo C; Lafrenière S; Malenfant PRL
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):38880-38894. PubMed ID: 31550883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerable Self-Sintering of Solvent-Free Molybdenum/Wax Biodegradable Composites for Multimodally Transient Electronics.
    Wei Z; Ma X; Zhao H; Wu X; Guo Q
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35830227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multijet Gold Nanoparticle Inks for Additive Manufacturing of Printed and Wearable Electronics.
    Valayil Varghese T; Eixenberger J; Rajabi-Kouchi F; Lazouskaya M; Francis C; Burgoyne H; Wada K; Subbaraman H; Estrada D
    ACS Mater Au; 2024 Jan; 4(1):65-73. PubMed ID: 38221917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.