These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

471 related articles for article (PubMed ID: 28833927)

  • 21. Biological Synthesis of CdS/CdSe Core/Shell Nanoparticles and Its Application in Quantum Dot Sensitized Solar Cells.
    Órdenes-Aenishanslins N; Anziani-Ostuni G; Quezada CP; Espinoza-González R; Bravo D; Pérez-Donoso JM
    Front Microbiol; 2019; 10():1587. PubMed ID: 31354676
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhance photoelectrochemical hydrogen-generation activity and stability of TiO2 nanorod arrays sensitized by PbS and CdS quantum dots under UV-visible light.
    Li L; Dai H; Feng L; Luo D; Wang S; Sun X
    Nanoscale Res Lett; 2015 Dec; 10(1):418. PubMed ID: 26497733
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly efficient inverted type-I CdS/CdSe core/shell structure QD-sensitized solar cells.
    Pan Z; Zhang H; Cheng K; Hou Y; Hua J; Zhong X
    ACS Nano; 2012 May; 6(5):3982-91. PubMed ID: 22509717
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photodeposition of Ag2S quantum dots and application to photoelectrochemical cells for hydrogen production under simulated sunlight.
    Nagasuna K; Akita T; Fujishima M; Tada H
    Langmuir; 2011 Jun; 27(11):7294-300. PubMed ID: 21553826
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CuS/CdS Quantum Dot Composite Sensitizer and Its Applications to Various TiO2 Mesoporous Film-Based Solar Cell Devices.
    Kim M; Ochirbat A; Lee HJ
    Langmuir; 2015 Jul; 31(27):7609-15. PubMed ID: 26086801
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ag plasmonic nanostructures and a novel gel electrolyte in a high efficiency TiO2/CdS solar cell.
    Kumar PN; Deepa M; Srivastava AK
    Phys Chem Chem Phys; 2015 Apr; 17(15):10040-52. PubMed ID: 25785507
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanocrystal Size-Dependent Efficiency of Quantum Dot Sensitized Solar Cells in the Strongly Coupled CdSe Nanocrystals/TiO2 System.
    Yun HJ; Paik T; Diroll B; Edley ME; Baxter JB; Murray CB
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14692-700. PubMed ID: 27224958
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shell Thickness Engineering Significantly Boosts the Photocatalytic H
    Wang P; Wang M; Zhang J; Li C; Xu X; Jin Y
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35712-35720. PubMed ID: 28952304
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-Cost Copper Nanostructures Impart High Efficiencies to Quantum Dot Solar Cells.
    Kumar PN; Deepa M; Ghosal P
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13303-13. PubMed ID: 26000891
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancement of Photo-Current Conversion Efficiency in a CdS/CdSe Quantum-Dot-Sensitized Solar Cell Incorporated with Single-Walled Carbon Nanotubes.
    Park H; Lee J; Park T; Lee S; Yi W
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1614-7. PubMed ID: 26353701
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stable quantum dot photoelectrolysis cell for unassisted visible light solar water splitting.
    Yang HB; Miao J; Hung SF; Huo F; Chen HM; Liu B
    ACS Nano; 2014 Oct; 8(10):10403-13. PubMed ID: 25268880
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Incorporation of Mn
    Zhang C; Liu S; Liu X; Deng F; Xiong Y; Tsai FC
    R Soc Open Sci; 2018 Mar; 5(3):171712. PubMed ID: 29657776
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient Photoelectrochemical Hydrogen Generation Based on Core Size Effect of Heterostructured Quantum Dots.
    Wang K; Tao Y; Tang Z; Xu X; Benetti D; Vidal F; Zhao H; Rosei F; Sun X
    Small; 2024 Apr; 20(16):e2306453. PubMed ID: 38032174
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved performance of CuInS2 quantum dot-sensitized solar cells based on a multilayered architecture.
    Chang JY; Lin JM; Su LF; Chang CF
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8740-52. PubMed ID: 23937511
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Performance Enhancement of CdS/CdSe Quantum Dot-Sensitized Solar Cells with (001)-Oriented Anatase TiO
    Huang KY; Luo YH; Cheng HM; Tang J; Huang JH
    Nanoscale Res Lett; 2019 Jan; 14(1):18. PubMed ID: 30635791
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CdSe-CdS quantum dots co-sensitized ZnO hierarchical hybrids for solar cells with enhanced photo-electrical conversion efficiency.
    Yuan Z; Yin L
    Nanoscale; 2014 Nov; 6(21):13135-44. PubMed ID: 25251160
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Whispering Gallery Mode Enabled Efficiency Enhancement: Defect and Size Controlled CdSe Quantum Dot Sensitized Whisperonic Solar Cells.
    Das TK; Ilaiyaraja P; Sudakar C
    Sci Rep; 2018 Jun; 8(1):9709. PubMed ID: 29946160
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tuning band alignment by CdS layers using a SILAR method to enhance TiO2/CdS/CdSe quantum-dot solar-cell performance.
    Zhang B; Zheng J; Li X; Fang Y; Wang LW; Lin Y; Pan F
    Chem Commun (Camb); 2016 Apr; 52(33):5706-9. PubMed ID: 27040601
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photoassisted synthesis of CdSe and core-shell CdSe/CdS quantum dots.
    Lin YW; Hsieh MM; Liu CP; Chang HT
    Langmuir; 2005 Jan; 21(2):728-34. PubMed ID: 15641847
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microstructural and optical properties of CdSe/CdS/ZnS core-shell-shell quantum dots.
    Lee DU; Kim DH; Choi DH; Kim SW; Lee HS; Yoo KH; Kim TW
    Opt Express; 2016 Jan; 24(2):A350-7. PubMed ID: 26832587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.