BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 28833950)

  • 1. Novel Biodegradable Polymer with Redox-Triggered Backbone Cleavage Through Sequential 1,6-Elimination and 1,5-Cyclization Reactions.
    Whang CH; Kim KS; Bae J; Chen J; Jun HW; Jo S
    Macromol Rapid Commun; 2017 Oct; 38(19):. PubMed ID: 28833950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cascade biodegradable polymer based on alternating cyclization and elimination reactions.
    Dewit MA; Gillies ER
    J Am Chem Soc; 2009 Dec; 131(51):18327-34. PubMed ID: 19950931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox-sensitive polymeric nanoparticles for drug delivery.
    Cho H; Bae J; Garripelli VK; Anderson JM; Jun HW; Jo S
    Chem Commun (Camb); 2012 Jun; 48(48):6043-5. PubMed ID: 22575892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the enzymatic degradation of poly(glycerol adipate).
    Swainson SME; Taresco V; Pearce AK; Clapp LH; Ager B; McAllister M; Bosquillon C; Garnett MC
    Eur J Pharm Biopharm; 2019 Sep; 142():377-386. PubMed ID: 31319123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradable Nanoparticles: A Recent Approach and Applications.
    Patil V; Patel A
    Curr Drug Targets; 2020; 21(16):1722-1732. PubMed ID: 32938346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and Characterization of Stimuli-Responsive Star-Like Polypept(o)ides: Introducing Biodegradable PeptoStars.
    Holm R; Weber B; Heller P; Klinker K; Westmeier D; Docter D; Stauber RH; Barz M
    Macromol Biosci; 2017 Jun; 17(6):. PubMed ID: 28198589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox-sensitive self-assembled nanoparticles based on alpha-tocopherol succinate-modified heparin for intracellular delivery of paclitaxel.
    Yang X; Cai X; Yu A; Xi Y; Zhai G
    J Colloid Interface Sci; 2017 Jun; 496():311-326. PubMed ID: 28237749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural biodegradable polymers based nano-formulations for drug delivery: A review.
    George A; Shah PA; Shrivastav PS
    Int J Pharm; 2019 Apr; 561():244-264. PubMed ID: 30851391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox-Responsive Polymer with Self-Immolative Linkers for the Release of Payloads.
    Iamsaard S; Seidi F; Dararatana N; Crespy D
    Macromol Rapid Commun; 2018 Jun; 39(12):e1800071. PubMed ID: 29748982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-immolative polymers.
    Sagi A; Weinstain R; Karton N; Shabat D
    J Am Chem Soc; 2008 Apr; 130(16):5434-5. PubMed ID: 18376834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel free-paclitaxel-loaded redox-responsive nanoparticles based on a disulfide-linked poly(ethylene glycol)-drug conjugate for intracellular drug delivery: synthesis, characterization, and antitumor activity in vitro and in vivo.
    Chuan X; Song Q; Lin J; Chen X; Zhang H; Dai W; He B; Wang X; Zhang Q
    Mol Pharm; 2014 Oct; 11(10):3656-70. PubMed ID: 25208098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zwitterionic Polyester-Based Nanoparticles with Tunable Size, Polymer Molecular Weight, and Degradation Time.
    Capasso Palmiero U; Maraldi M; Manfredini N; Moscatelli D
    Biomacromolecules; 2018 Apr; 19(4):1314-1323. PubMed ID: 29522318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual Functional Nanocarrier for Cellular Imaging and Drug Delivery in Cancer Cells Based on π-Conjugated Core and Biodegradable Polymer Arms.
    Kulkarni B; Surnar B; Jayakannan M
    Biomacromolecules; 2016 Mar; 17(3):1004-16. PubMed ID: 26842888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradable zwitterionic sulfobetaine polymer and its conjugate with paclitaxel for sustained drug delivery.
    Sun H; Chang MYZ; Cheng WI; Wang Q; Commisso A; Capeling M; Wu Y; Cheng C
    Acta Biomater; 2017 Dec; 64():290-300. PubMed ID: 29030301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Polymeric Bowl for Multi-Agent Delivery.
    Hyun DC
    Macromol Rapid Commun; 2015 Aug; 36(16):1498-504. PubMed ID: 26033149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile Fabrication of AIE-Active Fluorescent Polymeric Nanoparticles with Ultra-Low Critical Micelle Concentration Based on Ce(IV) Redox Polymerization for Biological Imaging Applications.
    Wan Q; Xu D; Mao L; He Z; Zeng G; Shi Y; Deng F; Liu M; Zhang X; Wei Y
    Macromol Rapid Commun; 2017 Apr; 38(8):. PubMed ID: 28221732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox-Sensitive Micelles Based on O,N-Hydroxyethyl Chitosan-Octylamine Conjugates for Triggered Intracellular Delivery of Paclitaxel.
    Huo M; Liu Y; Wang L; Yin T; Qin C; Xiao Y; Yin L; Liu J; Zhou J
    Mol Pharm; 2016 Jun; 13(6):1750-62. PubMed ID: 27100204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable zwitterionic nanoparticles with tunable UCST-type phase separation under physiological conditions.
    Sponchioni M; Rodrigues Bassam P; Moscatelli D; Arosio P; Capasso Palmiero U
    Nanoscale; 2019 Sep; 11(35):16582-16591. PubMed ID: 31460534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Redox-Responsive Amphiphilic Copolymer Micelles for Drug Delivery: Synthesis and Characterization.
    Bae J; Maurya A; Shariat-Madar Z; Murthy SN; Jo S
    AAPS J; 2015 Nov; 17(6):1357-68. PubMed ID: 26122497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled release kinetics of p-aminosalicylic acid from biodegradable crosslinked polyesters for enhanced anti-mycobacterial activity.
    Dasgupta Q; Madras G; Chatterjee K
    Acta Biomater; 2016 Jan; 30():168-176. PubMed ID: 26596566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.