These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28834185)

  • 1. Automated analysis of individual sperm cells using stain-free interferometric phase microscopy and machine learning.
    Mirsky SK; Barnea I; Levi M; Greenspan H; Shaked NT
    Cytometry A; 2017 Sep; 91(9):893-900. PubMed ID: 28834185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partially spatially coherent digital holographic microscopy and machine learning for quantitative analysis of human spermatozoa under oxidative stress condition.
    Dubey V; Popova D; Ahmad A; Acharya G; Basnet P; Mehta DS; Ahluwalia BS
    Sci Rep; 2019 Mar; 9(1):3564. PubMed ID: 30837490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Individual sperm selection by microfluidics integrated with interferometric phase microscopy.
    Eravuchira PJ; Mirsky SK; Barnea I; Levi M; Balberg M; Shaked NT
    Methods; 2018 Mar; 136():152-159. PubMed ID: 28958952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stain-free interferometric phase microscopy correlation with DNA fragmentation stain in human spermatozoa.
    Barnea I; Karako L; Mirsky SK; Levi M; Balberg M; Shaked NT
    J Biophotonics; 2018 Nov; 11(11):e201800137. PubMed ID: 29877620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning predicts live-birth occurrence before in-vitro fertilization treatment.
    Goyal A; Kuchana M; Ayyagari KPR
    Sci Rep; 2020 Dec; 10(1):20925. PubMed ID: 33262383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interferometric phase microscopy for label-free morphological evaluation of sperm cells.
    Haifler M; Girshovitz P; Band G; Dardikman G; Madjar I; Shaked NT
    Fertil Steril; 2015 Jul; 104(1):43-7.e2. PubMed ID: 26003272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dictionary learning approach for human sperm heads classification.
    Shaker F; Monadjemi SA; Alirezaie J; Naghsh-Nilchi AR
    Comput Biol Med; 2017 Dec; 91():181-190. PubMed ID: 29100112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic segmentation of Sperm's parts in microscopic images of human semen smears using concatenated learning approaches.
    Movahed RA; Mohammadi E; Orooji M
    Comput Biol Med; 2019 Jun; 109():242-253. PubMed ID: 31096088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Holographic virtual staining of individual biological cells.
    Nygate YN; Levi M; Mirsky SK; Turko NA; Rubin M; Barnea I; Dardikman-Yoffe G; Haifler M; Shalev A; Shaked NT
    Proc Natl Acad Sci U S A; 2020 Apr; 117(17):9223-9231. PubMed ID: 32284403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphometric dimensions of the human sperm head depend on the staining method used.
    Maree L; du Plessis SS; Menkveld R; van der Horst G
    Hum Reprod; 2010 Jun; 25(6):1369-82. PubMed ID: 20400771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison and optimization of machine learning methods for automated classification of circulating tumor cells.
    Lannin TB; Thege FI; Kirby BJ
    Cytometry A; 2016 Oct; 89(10):922-931. PubMed ID: 27754580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-Time Stain-Free Classification of Cancer Cells and Blood Cells Using Interferometric Phase Microscopy and Machine Learning.
    Nissim N; Dudaie M; Barnea I; Shaked NT
    Cytometry A; 2021 May; 99(5):511-523. PubMed ID: 32910546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localized measurements of physical parameters within human sperm cells obtained with wide-field interferometry.
    Balberg M; Levi M; Kalinowski K; Barnea I; Mirsky SK; Shaked NT
    J Biophotonics; 2017 Oct; 10(10):1305-1314. PubMed ID: 28079304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative phase microscopy spatial signatures of cancer cells.
    Roitshtain D; Wolbromsky L; Bal E; Greenspan H; Satterwhite LL; Shaked NT
    Cytometry A; 2017 May; 91(5):482-493. PubMed ID: 28426133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-free, high-throughput holographic imaging to evaluate mammalian gametes and embryos†.
    Wheeler MB; Rabel RAC; Rubessa M; Popescu G
    Biol Reprod; 2024 Jun; 110(6):1125-1134. PubMed ID: 38733568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictive Modeling of Implantation Outcome in an In Vitro Fertilization Setting: An Application of Machine Learning Methods.
    Uyar A; Bener A; Ciray HN
    Med Decis Making; 2015 Aug; 35(6):714-25. PubMed ID: 24842951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sperm Inspection for In Vitro Fertilization via Self-Assembled Microdroplet Formation and Quantitative Phase Microscopy.
    Atzitz Y; Dudaie M; Barnea I; Shaked NT
    Cells; 2021 Nov; 10(12):. PubMed ID: 34943823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motile sperm organelle morphology examination (MSOME) can predict outcomes of conventional in vitro fertilization: A prospective pilot diagnostic study.
    Gao Y; Zhang X; Xiong S; Han W; Liu J; Huang G
    Hum Fertil (Camb); 2015; 18(4):258-64. PubMed ID: 26646391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive oxygen species, total antioxidant concentration of seminal plasma and their effect on sperm parameters and outcome of IVF/ICSI patients.
    Hammadeh ME; Al Hasani S; Rosenbaum P; Schmidt W; Fischer Hammadeh C
    Arch Gynecol Obstet; 2008 Jun; 277(6):515-26. PubMed ID: 18026972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold-standard for computer-assisted morphological sperm analysis.
    Chang V; Garcia A; Hitschfeld N; Härtel S
    Comput Biol Med; 2017 Apr; 83():143-150. PubMed ID: 28279863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.