These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 28834226)

  • 1. Polymeric Redox-Active Electrodes for Sodium-Ion Batteries.
    Fernández N; Sánchez-Fontecoba P; Castillo-Martínez E; Carretero-González J; Rojo T; Armand M
    ChemSusChem; 2018 Jan; 11(1):311-319. PubMed ID: 28834226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Biodegradable Polydopamine-Derived Electrode Material for High-Capacity and Long-Life Lithium-Ion and Sodium-Ion Batteries.
    Sun T; Li ZJ; Wang HG; Bao D; Meng FL; Zhang XB
    Angew Chem Int Ed Engl; 2016 Aug; 55(36):10662-6. PubMed ID: 27485314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(exTTF): a novel redox-active polymer as active material for li-organic batteries.
    Häupler B; Burges R; Friebe C; Janoschka T; Schmidt D; Wild A; Schubert US
    Macromol Rapid Commun; 2014 Aug; 35(15):1367-71. PubMed ID: 24861014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries.
    Wang HG; Wu Z; Meng FL; Ma DL; Huang XL; Wang LM; Zhang XB
    ChemSusChem; 2013 Jan; 6(1):56-60. PubMed ID: 23225752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between Na-Ion and Li-Ion Cells: Understanding the Critical Role of the Cathodes Stability and the Anodes Pretreatment on the Cells Behavior.
    de la Llave E; Borgel V; Park KJ; Hwang JY; Sun YK; Hartmann P; Chesneau FF; Aurbach D
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1867-75. PubMed ID: 26642926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical Behavior of PEDOT/Lignin in Ionic Liquid Electrolytes: Suitable Cathode/Electrolyte System for Sodium Batteries.
    Casado N; Hilder M; Pozo-Gonzalo C; Forsyth M; Mecerreyes D
    ChemSusChem; 2017 Apr; 10(8):1783-1791. PubMed ID: 28198593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pectin, Hemicellulose, or Lignin? Impact of the Biowaste Source on the Performance of Hard Carbons for Sodium-Ion Batteries.
    Dou X; Hasa I; Hekmatfar M; Diemant T; Behm RJ; Buchholz D; Passerini S
    ChemSusChem; 2017 Jun; 10(12):2668-2676. PubMed ID: 28425668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Binders, Carbons, and Solvents on the Stability of Phosphorus Anodes for Li-ion Batteries.
    Nitta N; Lei D; Jung HR; Gordon D; Zhao E; Gresham G; Cai J; Luzinov I; Yushin G
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):25991-26001. PubMed ID: 27636526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conducting Block Copolymer Binders for Carbon-Free Hybrid Vanadium Pentoxide Cathodes with Enhanced Performance.
    An H; Li X; Chalker C; Stracke M; Verduzco R; Lutkenhaus JL
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):28585-28591. PubMed ID: 27676130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co
    Zhao Y; Pang Q; Wei Y; Wei L; Ju Y; Zou B; Gao Y; Chen G
    ChemSusChem; 2017 Dec; 10(23):4778-4785. PubMed ID: 28873282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries.
    Guo S; Yu H; Jian Z; Liu P; Zhu Y; Guo X; Chen M; Ishida M; Zhou H
    ChemSusChem; 2014 Aug; 7(8):2115-9. PubMed ID: 24919424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. General approach for high-power li-ion batteries: multiscale lithographic patterning of electrodes.
    Choi S; Kim TH; Lee JI; Kim J; Song HK; Park S
    ChemSusChem; 2014 Dec; 7(12):3483-90. PubMed ID: 25333718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible carbon nanotube--Cu2O hybrid electrodes for li-ion batteries.
    Goyal A; Reddy AL; Ajayan PM
    Small; 2011 Jun; 7(12):1709-13. PubMed ID: 21574248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesocrystalline coordination polymer as a promising cathode for sodium-ion batteries.
    Meng Q; Zhang W; Hu M; Jiang JS
    Chem Commun (Camb); 2016 Jan; 52(9):1957-60. PubMed ID: 26688489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life.
    Dong X; Chen L; Liu J; Haller S; Wang Y; Xia Y
    Sci Adv; 2016 Jan; 2(1):e1501038. PubMed ID: 26844298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precursor polymers for the carbon coating of Au@ZnO multipods for application as active material in lithium-ion batteries.
    Oschmann B; Tahir MN; Mueller F; Bresser D; Lieberwirth I; Tremel W; Passerini S; Zentel R
    Macromol Rapid Commun; 2015 Jun; 36(11):1075-82. PubMed ID: 25598387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disordered 3 D Multi-layer Graphene Anode Material from CO2 for Sodium-Ion Batteries.
    Smith K; Parrish R; Wei W; Liu Y; Li T; Hu YH; Xiong H
    ChemSusChem; 2016 Jun; 9(12):1397-402. PubMed ID: 27121419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries.
    Tepavcevic S; Xiong H; Stamenkovic VR; Zuo X; Balasubramanian M; Prakapenka VB; Johnson CS; Rajh T
    ACS Nano; 2012 Jan; 6(1):530-8. PubMed ID: 22148185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium terephthalate as an organic anode material for sodium ion batteries.
    Park Y; Shin DS; Woo SH; Choi NS; Shin KH; Oh SM; Lee KT; Hong SY
    Adv Mater; 2012 Jul; 24(26):3562-7. PubMed ID: 22678780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Performance Particle/Polymer Nanofiber Anodes for Li-ion Batteries using Electrospinning.
    Self EC; McRen EC; Pintauro PN
    ChemSusChem; 2016 Jan; 9(2):208-15. PubMed ID: 26749072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.