These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 28834280)

  • 1. Metal Phosphides and Phosphates-based Electrodes for Electrochemical Supercapacitors.
    Li X; Elshahawy AM; Guan C; Wang J
    Small; 2017 Oct; 13(39):. PubMed ID: 28834280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overview of transition metal-based composite materials for supercapacitor electrodes.
    Cui M; Meng X
    Nanoscale Adv; 2020 Dec; 2(12):5516-5528. PubMed ID: 36133879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Status review of nickel phosphides for hybrid supercapacitors.
    Patil SS; Patil PS
    Nanoscale; 2022 Nov; 14(45):16731-16748. PubMed ID: 36345777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bimetallic Phosphides for Hybrid Supercapacitors.
    Aziz ST; Kumar S; Riyajuddin S; Ghosh K; Nessim GD; Dubal DP
    J Phys Chem Lett; 2021 Jun; 12(21):5138-5149. PubMed ID: 34032113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freestanding trimetallic Fe-Co-Ni phosphide nanosheet arrays as an advanced electrode for high-performance asymmetric supercapacitors.
    Xie M; Zhou M; Zhang Y; Du C; Chen J; Wan L
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):79-89. PubMed ID: 34626998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NiCo
    Zong Q; Yang H; Wang Q; Zhang Q; Xu J; Zhu Y; Wang H; Wang H; Zhang F; Shen Q
    Dalton Trans; 2018 Nov; 47(45):16320-16328. PubMed ID: 30403240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel mesoporous electrode materials for symmetric, asymmetric and hybrid supercapacitors.
    Cherusseri J; Sambath Kumar K; Choudhary N; Nagaiah N; Jung Y; Roy T; Thomas J
    Nanotechnology; 2019 May; 30(20):202001. PubMed ID: 30754027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advancements in Electrochemical Deposition of Metal-Based Electrode Materials for Electrochemical Supercapacitors.
    Islam S; Mia MM; Shah SS; Naher S; Shaikh MN; Aziz MA; Ahammad AJS
    Chem Rec; 2022 Jul; 22(7):e202200013. PubMed ID: 35313076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multimetallic transition metal phosphide nanostructures for supercapacitors and electrochemical water splitting.
    Zhang N; Amorim I; Liu L
    Nanotechnology; 2022 Aug; 33(43):. PubMed ID: 35820404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly of Metal-Organic Frameworks on Transition Metal Phosphides as Self-Supported Electrodes for High-Performance Hybrid Supercapacitors.
    Ma X; Xu D; Guo J; Tao K; Hu Y; Li G; Han L
    Inorg Chem; 2022 Dec; 61(48):19240-19247. PubMed ID: 36394962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-Organic Framework-Derived Nanoporous Metal Oxides toward Supercapacitor Applications: Progress and Prospects.
    Salunkhe RR; Kaneti YV; Yamauchi Y
    ACS Nano; 2017 Jun; 11(6):5293-5308. PubMed ID: 28613076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Development of Flexible and Stretchable Supercapacitors Using Transition Metal Compounds as Electrode Materials.
    Lyu L; Hooch Antink W; Kim YS; Kim CW; Hyeon T; Piao Y
    Small; 2021 Sep; 17(36):e2101974. PubMed ID: 34323350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of Carbon/Metal Oxide Hybrids for Electrochemical Energy Storage.
    Fleischmann S; Tolosa A; Presser V
    Chemistry; 2018 Aug; 24(47):12143-12153. PubMed ID: 29672971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical Deposition for Cultivating Nano- and Microstructured Electroactive Materials for Supercapacitors: Recent Developments and Future Perspectives.
    Kumar SA; Sahoo S; Laxminarayana GK; Rout CS
    Small; 2024 Jun; ():e2402087. PubMed ID: 38845531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Development on Transition Metal Oxides-Based Core-Shell Structures for Boosted Energy Density Supercapacitors.
    Malavekar D; Pujari S; Jang S; Bachankar S; Kim JH
    Small; 2024 Apr; ():e2312179. PubMed ID: 38593336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene/transition metal dichalcogenides hybrid supercapacitor electrode: status, challenges, and perspectives.
    Seman RNAR; Azam MA; Ani MH
    Nanotechnology; 2018 Dec; 29(50):502001. PubMed ID: 30248022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-Organic Framework-Derived Materials for Sodium Energy Storage.
    Zou G; Hou H; Ge P; Huang Z; Zhao G; Yin D; Ji X
    Small; 2018 Jan; 14(3):. PubMed ID: 29227019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of 2D Materials to Potassium-Ion Hybrid Capacitors.
    Zhang D; Li L; Deng J; Gou Y; Fang J; Cui H; Zhao Y; Shang K
    ChemSusChem; 2021 May; 14(9):1974-1986. PubMed ID: 33829675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A General Electrodeposition Strategy for Fabricating Ultrathin Nickel Cobalt Phosphate Nanosheets with Ultrahigh Capacity and Rate Performance.
    Huang J; Xiong Y; Peng Z; Chen L; Wang L; Xu Y; Tan L; Yuan K; Chen Y
    ACS Nano; 2020 Oct; 14(10):14201-14211. PubMed ID: 33012161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Progress in Some Amorphous Materials for Supercapacitors.
    Li Q; Xu Y; Zheng S; Guo X; Xue H; Pang H
    Small; 2018 Jul; 14(28):e1800426. PubMed ID: 29761631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.