These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 28834403)

  • 1. Dry Reforming of Methane in a Gliding Arc Plasmatron: Towards a Better Understanding of the Plasma Chemistry.
    Cleiren E; Heijkers S; Ramakers M; Bogaerts A
    ChemSusChem; 2017 Oct; 10(20):4025-4036. PubMed ID: 28834403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gliding Arc Plasmatron: Providing an Alternative Method for Carbon Dioxide Conversion.
    Ramakers M; Trenchev G; Heijkers S; Wang W; Bogaerts A
    ChemSusChem; 2017 Jun; 10(12):2642-2652. PubMed ID: 28481058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of dry (CO2) reforming of methane over noble metal catalysts.
    Pakhare D; Spivey J
    Chem Soc Rev; 2014 Nov; 43(22):7813-37. PubMed ID: 24504089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CO2 reforming of CH4 over CeO2-doped Ni/Al2O3 nanocatalyst treated by non-thermal plasma.
    Rahemi N; Haghighi M; Babaluo AA; Jafari MF; Estifaee P
    J Nanosci Nanotechnol; 2013 Jul; 13(7):4896-908. PubMed ID: 23901509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Gas Composition on Temperature and CO
    Xu W; Van Alphen S; Galvita VV; Meynen V; Bogaerts A
    ChemSusChem; 2024 Mar; ():e202400169. PubMed ID: 38484131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-processing CH4 and oxygenates on Mo/H-ZSM-5: 2. CH4-CO2 and CH4-HCOOH mixtures.
    Bedard J; Hong DY; Bhan A
    Phys Chem Chem Phys; 2013 Aug; 15(29):12173-9. PubMed ID: 23703320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a gliding arc plasma reactor for CO₂destruction.
    Kim SC; Chun YN
    Environ Technol; 2014; 35(21-24):2940-6. PubMed ID: 25189841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fe-rich biomass derived char for microwave-assisted methane reforming with carbon dioxide.
    Li L; Yan K; Chen J; Feng T; Wang F; Wang J; Song Z; Ma C
    Sci Total Environ; 2019 Mar; 657():1357-1367. PubMed ID: 30677902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of hydrogen-rich gas from methane by thermal plasma reform.
    Chun YN; Kim SC
    J Air Waste Manag Assoc; 2007 Dec; 57(12):1447-51. PubMed ID: 18200929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of greenhouse gases through dry reforming: screening of nickel-based bimetallic catalysts and kinetic studies.
    Fan MS; Abdullah AZ; Bhatia S
    ChemSusChem; 2011 Nov; 4(11):1643-53. PubMed ID: 22191096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium-looping reforming of methane realizes in situ CO
    Tian S; Yan F; Zhang Z; Jiang J
    Sci Adv; 2019 Apr; 5(4):eaav5077. PubMed ID: 30993203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic and modeling investigations of the gas phase chemistry and composition in microwave plasma activated B2H6/CH4/Ar/H2 mixtures.
    Ma J; Richley JC; Davies DR; Ashfold MN
    J Phys Chem A; 2010 Sep; 114(37):10076-89. PubMed ID: 20735120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation of CO2-CH4 mixtures on defective single walled carbon nanohorns--tip does matter.
    Furmaniak S; Terzyk AP; Kowalczyk P; Kaneko K; Gauden PA
    Phys Chem Chem Phys; 2013 Oct; 15(39):16468-76. PubMed ID: 24002701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steam reforming of toluene and naphthalene as tar surrogate in a gliding arc discharge reactor.
    Zhang H; Zhu F; Li X; Xu R; Li L; Yan J; Tu X
    J Hazard Mater; 2019 May; 369():244-253. PubMed ID: 30780020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion of Carbon Dioxide by Methane Reforming under Visible-Light Irradiation: Surface-Plasmon-Mediated Nonpolar Molecule Activation.
    Liu H; Meng X; Dao TD; Zhang H; Li P; Chang K; Wang T; Li M; Nagao T; Ye J
    Angew Chem Int Ed Engl; 2015 Sep; 54(39):11545-9. PubMed ID: 26271348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle.
    Buelens LC; Galvita VV; Poelman H; Detavernier C; Marin GB
    Science; 2016 Oct; 354(6311):449-452. PubMed ID: 27738013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progress in Synthesis of Highly Active and Stable Nickel-Based Catalysts for Carbon Dioxide Reforming of Methane.
    Kawi S; Kathiraser Y; Ni J; Oemar U; Li Z; Saw ET
    ChemSusChem; 2015 Nov; 8(21):3556-75. PubMed ID: 26440576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Spectral analysis of the reaction of CH4 with CO2 as oxidant under plasma at atmospheric pressure].
    Zhai LY; Yu M; Zhou Q; Yuan XD; Zhang XL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Mar; 32(3):734-8. PubMed ID: 22582643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of Pd-Ag Membrane Reactors for Low-Temperature Dry Reforming of Biogas-A Simulation Study.
    Albano M; Madeira LM; Miguel CV
    Membranes (Basel); 2023 Jun; 13(7):. PubMed ID: 37504996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic Study on the Effect of Chromium Addition to Ni-Based Catalysts for the Steam-CO2 Reforming of Methane.
    Park YH; Li P; Moon DJ; Park NC; Kim YC
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1526-30. PubMed ID: 27433614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.