BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 28834576)

  • 1. Mammalian target of rapamycin as a therapeutic target in osteoporosis.
    Shen G; Ren H; Qiu T; Zhang Z; Zhao W; Yu X; Huang J; Tang J; Liang D; Yao Z; Yang Z; Jiang X
    J Cell Physiol; 2018 May; 233(5):3929-3944. PubMed ID: 28834576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The l-Ser analog #290 promotes bone recovery in OP and RA mice.
    Bahtiar A; Nakamura T; Kishida K; Katsura J; Nitta M; Ishida-Kitagawa N; Ogawa T; Takeya T
    Pharmacol Res; 2011 Sep; 64(3):203-9. PubMed ID: 21605676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erythropoietin mediated bone formation is regulated by mTOR signaling.
    Kim J; Jung Y; Sun H; Joseph J; Mishra A; Shiozawa Y; Wang J; Krebsbach PH; Taichman RS
    J Cell Biochem; 2012 Jan; 113(1):220-8. PubMed ID: 21898543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tetramethylpyrazine Protects Against Glucocorticoid-Induced Apoptosis by Promoting Autophagy in Mesenchymal Stem Cells and Improves Bone Mass in Glucocorticoid-Induced Osteoporosis Rats.
    Wang L; Zhang HY; Gao B; Shi J; Huang Q; Han YH; Hu YQ; Lu WG; Zhao ZJ; Liu BH; Jie Q; Yang L; Luo ZJ
    Stem Cells Dev; 2017 Mar; 26(6):419-430. PubMed ID: 27917698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone Size and Quality Regulation: Concerted Actions of mTOR in Mesenchymal Stromal Cells and Osteoclasts.
    Wu H; Wu Z; Li P; Cong Q; Chen R; Xu W; Biswas S; Liu H; Xia X; Li S; Hu W; Zhang Z; Habib SL; Zhang L; Zou J; Zhang H; Zhang W; Li B
    Stem Cell Reports; 2017 Jun; 8(6):1600-1616. PubMed ID: 28479301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapamycin promotes osteogenesis under inflammatory conditions.
    Li X; Chang B; Wang B; Bu W; Zhao L; Liu J; Meng L; Wang L; Xin Y; Wang D; Tang Q; Zheng C; Sun H
    Mol Med Rep; 2017 Dec; 16(6):8923-8929. PubMed ID: 28990080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence based anti-osteoporosis effects of Periplaneta americana L on osteoblasts, osteoclasts, vascular endothelial cells and bone marrow derived mesenchymal stem cells.
    Huang YF; Li LJ; Gao SQ; Chu Y; Niu J; Geng FN; Shen YM; Peng LH
    BMC Complement Altern Med; 2017 Aug; 17(1):413. PubMed ID: 28821253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy Metabolism of Bone.
    Motyl KJ; Guntur AR; Carvalho AL; Rosen CJ
    Toxicol Pathol; 2017 Oct; 45(7):887-893. PubMed ID: 29096593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of mTOR signaling pathway promotes bone marrow mesenchymal stem cells differentiation into osteoblast in degenerative scoliosis: in vivo and in vitro.
    Wang Y; Yi XD; Li CD
    Mol Biol Rep; 2017 Feb; 44(1):129-137. PubMed ID: 27888418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Communication factors-promising targets in osteoporosis treatment.
    Zhang Y; Liu P; Li J; Li K; Teng Y; Wang X; Li X
    Curr Drug Targets; 2014 Feb; 15(2):156-63. PubMed ID: 23919828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conjugated linoleic acid prevents age-induced bone loss in mice by regulating both osteoblastogenesis and adipogenesis.
    Lin G; Wang H; Dai J; Li X; Guan M; Gao S; Ding Q; Wang H; Fang H
    Biochem Biophys Res Commun; 2017 Aug; 490(3):813-820. PubMed ID: 28647365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic High Dose Alcohol Induces Osteopenia via Activation of mTOR Signaling in Bone Marrow Mesenchymal Stem Cells.
    Liu Y; Kou X; Chen C; Yu W; Su Y; Kim Y; Shi S; Liu Y
    Stem Cells; 2016 Aug; 34(8):2157-68. PubMed ID: 27145264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autophagy as a target for glucocorticoid-induced osteoporosis therapy.
    Shen G; Ren H; Shang Q; Qiu T; Yu X; Zhang Z; Huang J; Zhao W; Zhang Y; Liang D; Jiang X
    Cell Mol Life Sci; 2018 Aug; 75(15):2683-2693. PubMed ID: 29427075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteoblast as a target of anti-osteoporotic treatment.
    Corrado A; Sanpaolo ER; Di Bello S; Cantatore FP
    Postgrad Med; 2017 Nov; 129(8):858-865. PubMed ID: 28770650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Development of Molecular Biology of Osteoporosis.
    Gao Y; Patil S; Jia J
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DOK3 Modulates Bone Remodeling by Negatively Regulating Osteoclastogenesis and Positively Regulating Osteoblastogenesis.
    Cai X; Xing J; Long CL; Peng Q; Humphrey MB
    J Bone Miner Res; 2017 Nov; 32(11):2207-2218. PubMed ID: 28650106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The calcium-sensing receptor in bone metabolism: from bench to bedside and back.
    Cianferotti L; Gomes AR; Fabbri S; Tanini A; Brandi ML
    Osteoporos Int; 2015 Aug; 26(8):2055-71. PubMed ID: 26100412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lysophosphatidic acid: a potential mediator of osteoblast-osteoclast signaling in bone.
    Sims SM; Panupinthu N; Lapierre DM; Pereverzev A; Dixon SJ
    Biochim Biophys Acta; 2013 Jan; 1831(1):109-16. PubMed ID: 22892679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular and molecular effects of growth hormone and estrogen on human bone cells.
    Kassem M
    APMIS Suppl; 1997; 71():1-30. PubMed ID: 9357492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulsed electromagnetic fields inhibit osteoclast differentiation in RAW264.7 macrophages via suppression of the protein kinase B/mammalian target of rapamycin signaling pathway.
    Lei Y; Su J; Xu H; Yu Q; Zhao M; Tian J
    Mol Med Rep; 2018 Jul; 18(1):447-454. PubMed ID: 29749519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.