These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 28834635)

  • 1. Effects of the Formulations of Silicon-Based Composite Anodes on their Mechanical, Storage, and Electrochemical Properties.
    Assresahegn BD; Bélanger D
    ChemSusChem; 2017 Oct; 10(20):4080-4089. PubMed ID: 28834635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comprehensive Study of Hydrolyzed Polyacrylamide as a Binder for Silicon Anodes.
    Miranda A; Li X; Haregewoin AM; Sarang K; Lutkenhaus J; Kostecki R; Verduzco R
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44090-44100. PubMed ID: 31648518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of desolvation and resilience of alginate binders for Si-based anodes in a lithium ion battery by calcium-mediated cross-linking.
    Yoon J; Oh DX; Jo C; Lee J; Hwang DS
    Phys Chem Chem Phys; 2014 Dec; 16(46):25628-35. PubMed ID: 25351494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A silicon nanowire-reduced graphene oxide composite as a high-performance lithium ion battery anode material.
    Ren JG; Wang C; Wu QH; Liu X; Yang Y; He L; Zhang W
    Nanoscale; 2014 Mar; 6(6):3353-60. PubMed ID: 24522297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ thermally cross-linked polyacrylonitrile as binder for high-performance silicon as lithium ion battery anode.
    Shen L; Shen L; Wang Z; Chen L
    ChemSusChem; 2014 Jul; 7(7):1951-6. PubMed ID: 24782265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-Inspired Binder Design for a Robust Conductive Network in Silicon-Based Anodes.
    Song Z; Zhang T; Wang L; Zhao Y; Li Z; Zhang M; Wang K; Xue S; Fang J; Ji Y; Pan F; Yang L
    Small Methods; 2022 May; 6(5):e2101591. PubMed ID: 35266326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable Preparation of Ternary Hierarchical Silicon Oxide-Nickel-Graphite Composites for Lithium-Ion Batteries.
    Wang J; Bao W; Ma L; Tan G; Su Y; Chen S; Wu F; Lu J; Amine K
    ChemSusChem; 2015 Dec; 8(23):4073-80. PubMed ID: 26548901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile synthesis of novel Si nanoparticles-graphene composites as high-performance anode materials for Li-ion batteries.
    Zhou M; Pu F; Wang Z; Cai T; Chen H; Zhang H; Guan S
    Phys Chem Chem Phys; 2013 Jul; 15(27):11394-401. PubMed ID: 23740151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virus-enabled silicon anode for lithium-ion batteries.
    Chen X; Gerasopoulos K; Guo J; Brown A; Wang C; Ghodssi R; Culver JN
    ACS Nano; 2010 Sep; 4(9):5366-72. PubMed ID: 20707328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Areal Capacity Si/LiCoO
    Self EC; Naguib M; Ruther RE; McRen EC; Wycisk R; Liu G; Nanda J; Pintauro PN
    ChemSusChem; 2017 Apr; 10(8):1823-1831. PubMed ID: 28276166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon-coated Si nanoparticles dispersed in carbon nanotube networks as anode material for lithium-ion batteries.
    Xue L; Xu G; Li Y; Li S; Fu K; Shi Q; Zhang X
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):21-5. PubMed ID: 23206443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymer-free Vertical Transfer of Silicon Nanowires and their Application to Energy Storage.
    Kim HJ; Lee J; Lee SE; Kim W; Kim HJ; Choi DG; Park JH
    ChemSusChem; 2013 Nov; 6(11):2144-8. PubMed ID: 24039099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rationally designed composite of alternating strata of Si nanoparticles and graphene: a high-performance lithium-ion battery anode.
    Sun F; Huang K; Qi X; Gao T; Liu Y; Zou X; Wei X; Zhong J
    Nanoscale; 2013 Sep; 5(18):8586-92. PubMed ID: 23893258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carboxymethyl fenugreek gum: Rheological characterization and as a novel binder for silicon anode of lithium-ion batteries.
    Qiu L; Shen Y; Fan H; Yang X; Wang C
    Int J Biol Macromol; 2018 Aug; 115():672-679. PubMed ID: 29673957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Limitation of discharge capacity and mechanisms of air-electrode deactivation in silicon-air batteries.
    Jakes P; Cohn G; Ein-Eli Y; Scheiba F; Ehrenberg H; Eichel RA
    ChemSusChem; 2012 Nov; 5(11):2278-85. PubMed ID: 23033259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene encapsulated and SiC reinforced silicon nanowires as an anode material for lithium ion batteries.
    Yang Y; Ren JG; Wang X; Chui YS; Wu QH; Chen X; Zhang W
    Nanoscale; 2013 Sep; 5(18):8689-94. PubMed ID: 23900559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Temperature Treated Lignin as Both Binder and Conductive Additive for Silicon Nanoparticle Composite Electrodes in Lithium-Ion Batteries.
    Chen T; Zhang Q; Pan J; Xu J; Liu Y; Al-Shroofy M; Cheng YT
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32341-32348. PubMed ID: 27933840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene oxide-immobilized NH₂-terminated silicon nanoparticles by cross-linked interactions for highly stable silicon negative electrodes.
    Sun C; Deng Y; Wan L; Qin X; Chen G
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11277-85. PubMed ID: 24922522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid.
    Magasinski A; Zdyrko B; Kovalenko I; Hertzberg B; Burtovyy R; Huebner CF; Fuller TF; Luzinov I; Yushin G
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3004-10. PubMed ID: 21053920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrodeposited three-dimensional Ni-Si nanocable arrays as high performance anodes for lithium ion batteries.
    Liu H; Hu L; Meng YS; Li Q
    Nanoscale; 2013 Nov; 5(21):10376-83. PubMed ID: 24057142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.