These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 28834691)

  • 41. Flavour chemistry of methylglyoxal and glyoxal.
    Wang Y; Ho CT
    Chem Soc Rev; 2012 Jun; 41(11):4140-9. PubMed ID: 22508009
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Trapping Methylglyoxal by Genistein and Its Metabolites in Mice.
    Wang P; Chen H; Sang S
    Chem Res Toxicol; 2016 Mar; 29(3):406-14. PubMed ID: 26881724
    [TBL] [Abstract][Full Text] [Related]  

  • 43. N-Terminal 2,3-diaminopropionic acid (Dap) peptides as efficient methylglyoxal scavengers to inhibit advanced glycation endproduct (AGE) formation.
    Sasaki NA; Garcia-Alvarez MC; Wang Q; Ermolenko L; Franck G; Nhiri N; Martin MT; Audic N; Potier P
    Bioorg Med Chem; 2009 Mar; 17(6):2310-20. PubMed ID: 19261478
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Low-level chemiluminescence of N-beta-alanyl-L-histidine (L-carnosine).
    Achyuthan KE
    Luminescence; 1999; 14(5):245-53. PubMed ID: 10512988
    [TBL] [Abstract][Full Text] [Related]  

  • 45. New functions of glucosamine as a scavenger of the lipid peroxidation product malondialdehyde.
    Fang C; Peng M; Li G; Tian J; Yin D
    Chem Res Toxicol; 2007 Jun; 20(6):947-53. PubMed ID: 17480103
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The cytotoxic mechanism of malondialdehyde and protective effect of carnosine via protein cross-linking/mitochondrial dysfunction/reactive oxygen species/MAPK pathway in neurons.
    Cheng J; Wang F; Yu DF; Wu PF; Chen JG
    Eur J Pharmacol; 2011 Jan; 650(1):184-94. PubMed ID: 20868662
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-performance liquid chromatographic determination of creatine kinase activity influenced by methylglyoxal.
    Peng X; Ma J; Cheng KW; Chen B; Chen F; Wang M
    Biomed Chromatogr; 2009 Feb; 23(2):170-4. PubMed ID: 18816458
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reactivity of thermally treated α-dicarbonyl compounds.
    Pfeifer YV; Haase PT; Kroh LW
    J Agric Food Chem; 2013 Mar; 61(12):3090-6. PubMed ID: 23432453
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Site-selective modifications of arginine residues in human hemoglobin induced by methylglyoxal.
    Gao Y; Wang Y
    Biochemistry; 2006 Dec; 45(51):15654-60. PubMed ID: 17176087
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Carnosine and protein carbonyl groups: a possible relationship.
    Hipkiss AR
    Biochemistry (Mosc); 2000 Jul; 65(7):771-8. PubMed ID: 10951094
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Widespread, Reversible Cysteine Modification by Methylglyoxal Regulates Metabolic Enzyme Function.
    Coukos JS; Lee CW; Pillai KS; Liu KJ; Moellering RE
    ACS Chem Biol; 2023 Jan; 18(1):91-101. PubMed ID: 36562291
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultra performance liquid chromatography-mass spectrometric determination of the site specificity of modification of beta-casein by glucose and methylglyoxal.
    Lima M; Moloney C; Ames JM
    Amino Acids; 2009 Mar; 36(3):475-81. PubMed ID: 18516664
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-performance liquid chromatographic determination of glyoxal and methylglyoxal in urine by prederivatization to lumazinic rings using in serial fast scan fluorimetric and diode array detectors.
    Espinosa-Mansilla A; Durán-Merás I; Cañada FC; Márquez MP
    Anal Biochem; 2007 Dec; 371(1):82-91. PubMed ID: 17884007
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Studies on the formation of methylglyoxal from dihydroxyacetone in Manuka (Leptospermum scoparium) honey.
    Atrott J; Haberlau S; Henle T
    Carbohydr Res; 2012 Nov; 361():7-11. PubMed ID: 22960208
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantification of Carnosine-Aldehyde Adducts in Human Urine.
    da Silva Bispo V; Di Mascio P; Medeiros M
    Free Radic Biol Med; 2014 Oct; 75 Suppl 1():S27. PubMed ID: 26461323
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Substantial reaction between histamine and malondialdehyde: a new observation of carbonyl stress.
    Li L; Li G; Sheng S; Yin D
    Neuro Endocrinol Lett; 2005 Dec; 26(6):799-805. PubMed ID: 16380691
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Carnosine and its possible roles in nutrition and health.
    Hipkiss AR
    Adv Food Nutr Res; 2009; 57():87-154. PubMed ID: 19595386
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Unique Pattern of Protein-Bound Maillard Reaction Products in Manuka (Leptospermum scoparium) Honey.
    Hellwig M; Rückriemen J; Sandner D; Henle T
    J Agric Food Chem; 2017 May; 65(17):3532-3540. PubMed ID: 28415841
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Protein modification by methylglyoxal: chemical nature and synthetic mechanism of a major fluorescent adduct.
    Shipanova IN; Glomb MA; Nagaraj RH
    Arch Biochem Biophys; 1997 Aug; 344(1):29-36. PubMed ID: 9244378
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reaction of pyridoxamine with malondialdehyde: mechanism of inhibition of formation of advanced lipoxidation end-products.
    Kang Z; Li H; Li G; Yin D
    Amino Acids; 2006 Feb; 30(1):55-61. PubMed ID: 15990947
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.