These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 28835652)

  • 1. Litter chemistry explains contrasting feeding preferences of bacteria, fungi, and higher plants.
    Bonanomi G; Cesarano G; Lombardi N; Motti R; Scala F; Mazzoleni S; Incerti G
    Sci Rep; 2017 Aug; 7(1):9208. PubMed ID: 28835652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing chemistry and bioactivity of burned vs. decomposed plant litter: different pathways but same result?
    Bonanomi G; Incerti G; Abd El-Gawad AM; Cesarano G; Sarker TC; Saulino L; Lanzotti V; Saracino A; Rego FC; Mazzoleni S
    Ecology; 2018 Jan; 99(1):158-171. PubMed ID: 29065230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbiota modulation of allelopathy depends on litter chemistry: Mitigation or exacerbation?
    Bonanomi G; Zotti M; Idbella M; Mazzoleni S; Abd-ElGawad AM
    Sci Total Environ; 2021 Jul; 776():145942. PubMed ID: 33640554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of carbon from decomposing litter of two pioneer plant species into microbial communities of the detritusphere.
    Esperschütz J; Welzl G; Schreiner K; Buegger F; Munch JC; Schloter M
    FEMS Microbiol Lett; 2011 Jul; 320(1):48-55. PubMed ID: 21492198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Influence of Plant Litter on Soil Water Repellency: Insight from 13C NMR Spectroscopy.
    Cesarano G; Incerti G; Bonanomi G
    PLoS One; 2016; 11(3):e0152565. PubMed ID: 27022916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytotoxicity, not nitrogen immobilization, explains plant litter inhibitory effects: evidence from solid-state 13C NMR spectroscopy.
    Bonanomi G; Incerti G; Barile E; Capodilupo M; Antignani V; Mingo A; Lanzotti V; Scala F; Mazzoleni S
    New Phytol; 2011 Sep; 191(4):1018-1030. PubMed ID: 21574999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Photodegradation of Lignin Methoxyl C Promotes Fungal Decomposition of Lignin Aromatic C Measured with
    Yao B; Zeng X; Pang L; Kong X; Tian K; Ji Y; Sun S; Tian X
    J Fungi (Basel); 2022 Aug; 8(9):. PubMed ID: 36135625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Labile carbon 'primes' fungal use of nitrogen from submerged leaf litter.
    Soares M; Kritzberg ES; Rousk J
    FEMS Microbiol Ecol; 2017 Sep; 93(9):. PubMed ID: 28957586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial inputs at the litter layer translate climate into altered organic matter properties.
    Kohl L; Myers-Pigg A; Edwards KA; Billings SA; Warren J; Podrebarac FA; Ziegler SE
    Glob Chang Biol; 2021 Jan; 27(2):435-453. PubMed ID: 33112459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Succession of Microbial Decomposers Is Determined by Litter Type, but Site Conditions Drive Decomposition Rates.
    Buresova A; Kopecky J; Hrdinkova V; Kamenik Z; Omelka M; Sagova-Mareckova M
    Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31604765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benthic bacterial and fungal productivity and carbon turnover in a freshwater marsh.
    Buesing N; Gessner MO
    Appl Environ Microbiol; 2006 Jan; 72(1):596-605. PubMed ID: 16391096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fungal-bacterial dynamics and their contribution to terrigenous carbon turnover in relation to organic matter quality.
    Fabian J; Zlatanovic S; Mutz M; Premke K
    ISME J; 2017 Feb; 11(2):415-425. PubMed ID: 27983721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decomposer food web in a deciduous forest shows high share of generalist microorganisms and importance of microbial biomass recycling.
    López-Mondéjar R; Brabcová V; Štursová M; Davidová A; Jansa J; Cajthaml T; Baldrian P
    ISME J; 2018 Jun; 12(7):1768-1778. PubMed ID: 29491492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The microbial contribution to litter decomposition and plant growth.
    Zhang C; de Pasquale S; Hartman K; Stanley CE; Berendsen RL; van der Heijden MGA
    Environ Microbiol Rep; 2024 Feb; 16(1):e13205. PubMed ID: 38018445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial abundance and composition influence litter decomposition response to environmental change.
    Allison SD; Lu Y; Weihe C; Goulden ML; Martiny AC; Treseder KK; Martiny JB
    Ecology; 2013 Mar; 94(3):714-25. PubMed ID: 23687897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relative importance of bacteria and fungi in a tropical headwater stream: leaf decomposition and invertebrate feeding preference.
    Wright MS; Covich AP
    Microb Ecol; 2005 May; 49(4):536-46. PubMed ID: 16052374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sunlight Doubles Aboveground Carbon Loss in a Seasonally Dry Woodland in Patagonia.
    Berenstecher P; Vivanco L; Pérez LI; Ballaré CL; Austin AT
    Curr Biol; 2020 Aug; 30(16):3243-3251.e3. PubMed ID: 32619488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disentangling the root- and detritus-based food chain in the micro-food web of an arable soil by plant removal.
    Glavatska O; Müller K; Butenschoen O; Schmalwasser A; Kandeler E; Scheu S; Totsche KU; Ruess L
    PLoS One; 2017; 12(7):e0180264. PubMed ID: 28704438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fungal importance extends beyond litter decomposition in experimental early-successional streams.
    Frossard A; Gerull L; Mutz M; Gessner MO
    Environ Microbiol; 2012 Nov; 14(11):2971-83. PubMed ID: 22958100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Litter mixing promoted decomposition and altered microbial community in common bean root litter.
    Zhang L; Li J; Wang Z; Zhang D; Liu H; Wang J; Wu F; Wang X; Zhou X
    BMC Microbiol; 2023 May; 23(1):148. PubMed ID: 37217839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.