BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 28835683)

  • 1. The relative contribution of target-site mutations in complex acaricide resistant phenotypes as assessed by marker assisted backcrossing in Tetranychus urticae.
    Riga M; Bajda S; Themistokleous C; Papadaki S; Palzewicz M; Dermauw W; Vontas J; Leeuwen TV
    Sci Rep; 2017 Aug; 7(1):9202. PubMed ID: 28835683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A G326E substitution in the glutamate-gated chloride channel 3 (GluCl3) of the two-spotted spider mite Tetranychus urticae abolishes the agonistic activity of macrocyclic lactones.
    Mermans C; Dermauw W; Geibel S; Van Leeuwen T
    Pest Manag Sci; 2017 Dec; 73(12):2413-2418. PubMed ID: 28736919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A point mutation in a glutamate-gated chloride channel confers abamectin resistance in the two-spotted spider mite, Tetranychus urticae Koch.
    Kwon DH; Yoon KS; Clark JM; Lee SH
    Insect Mol Biol; 2010 Aug; 19(4):583-91. PubMed ID: 20522121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acaricide resistance status and identification of resistance mutations in populations of the two-spotted spider mite Tetranychus urticae from Ethiopia.
    Simma EA; Hailu B; Jonckheere W; Rogiers C; Duchateau L; Dermauw W; Van Leeuwen T
    Exp Appl Acarol; 2020 Dec; 82(4):475-491. PubMed ID: 33174613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of striking multiple-insecticide resistance in a Tetranychus urticae field population from Greece.
    Papapostolou KM; Riga M; Charamis J; Skoufa E; Souchlas V; Ilias A; Dermauw W; Ioannidis P; Van Leeuwen T; Vontas J
    Pest Manag Sci; 2021 Feb; 77(2):666-676. PubMed ID: 33051974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cys-loop ligand-gated ion channel gene family of Tetranychus urticae: implications for acaricide toxicology and a novel mutation associated with abamectin resistance.
    Dermauw W; Ilias A; Riga M; Tsagkarakou A; Grbić M; Tirry L; Van Leeuwen T; Vontas J
    Insect Biochem Mol Biol; 2012 Jul; 42(7):455-65. PubMed ID: 22465149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of pyrethroid resistance associated mutations in the para sodium channel of the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae).
    Tsagkarakou A; Van Leeuwen T; Khajehali J; Ilias A; Grispou M; Williamson MS; Tirry L; Vontas J
    Insect Mol Biol; 2009 Oct; 18(5):583-93. PubMed ID: 19754737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abamectin is metabolized by CYP392A16, a cytochrome P450 associated with high levels of acaricide resistance in Tetranychus urticae.
    Riga M; Tsakireli D; Ilias A; Morou E; Myridakis A; Stephanou EG; Nauen R; Dermauw W; Van Leeuwen T; Paine M; Vontas J
    Insect Biochem Mol Biol; 2014 Mar; 46():43-53. PubMed ID: 24463358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stage-Specific Expression of Resistance to Different Acaricides in Four Field Populations of Tetranychus urticae (Acari: Tetranychidae).
    Tang X; Zhang Y; Wu Q; Xie W; Wang S
    J Econ Entomol; 2014 Oct; 107(5):1900-7. PubMed ID: 26309280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resistance incidence and presence of resistance mutations in populations of Tetranychus urticae from vegetable crops in Turkey.
    İnak E; Alpkent YN; Çobanoğlu S; Dermauw W; Van Leeuwen T
    Exp Appl Acarol; 2019 Jul; 78(3):343-360. PubMed ID: 31250237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fitness costs of key point mutations that underlie acaricide target-site resistance in the two-spotted spider mite
    Bajda S; Riga M; Wybouw N; Papadaki S; Ouranou E; Fotoukkiaii SM; Vontas J; Van Leeuwen T
    Evol Appl; 2018 Oct; 11(9):1540-1553. PubMed ID: 30344626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenotypic and Genotypic Plasticity of Acaricide Resistance in Populations of Tetranychus urticae (Acari: Tetranychidae) on Peppermint and Silage Corn in the Pacific Northwest.
    Adesanya AW; Franco E; Walsh DB; Lavine M; Lavine L; Zhu F
    J Econ Entomol; 2018 Dec; 111(6):2831-2843. PubMed ID: 30289504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution QTL mapping in Tetranychus urticae reveals acaricide-specific responses and common target-site resistance after selection by different METI-I acaricides.
    Snoeck S; Kurlovs AH; Bajda S; Feyereisen R; Greenhalgh R; Villacis-Perez E; Kosterlitz O; Dermauw W; Clark RM; Van Leeuwen T
    Insect Biochem Mol Biol; 2019 Jul; 110():19-33. PubMed ID: 31022513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel evolution of cytochrome b mediated bifenazate resistance in the citrus red mite Panonychus citri.
    Van Leeuwen T; Van Nieuwenhuyse P; Vanholme B; Dermauw W; Nauen R; Tirry L
    Insect Mol Biol; 2011 Feb; 20(1):135-40. PubMed ID: 20735493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel target-site mutation (H146Q) outside the ubiquinone binding site of succinate dehydrogenase confers high levels of resistance to cyflumetofen and pyflubumide in Tetranychus urticae.
    İnak E; De Rouck S; Demirci B; Dermauw W; Geibel S; Van Leeuwen T
    Insect Biochem Mol Biol; 2024 Jul; 170():104127. PubMed ID: 38657708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acaricide resistance and resistance mechanisms in Tetranychus urticae populations from rose greenhouses in the Netherlands.
    Khajehali J; Van Nieuwenhuyse P; Demaeght P; Tirry L; Van Leeuwen T
    Pest Manag Sci; 2011 Nov; 67(11):1424-33. PubMed ID: 21548003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological resistance alters behavioral response of Tetranychus urticae to acaricides.
    Adesanya AW; Beauchamp MJ; Lavine MD; Lavine LC; Zhu F; Walsh DB
    Sci Rep; 2019 Dec; 9(1):19308. PubMed ID: 31848392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequencies and mechanisms of pesticide resistance in Tetranychus urticae field populations in China.
    Zhang Y; Xu D; Zhang Y; Wu Q; Xie W; Guo Z; Wang S
    Insect Sci; 2022 Jun; 29(3):827-839. PubMed ID: 34309214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional characterization of the Tetranychus urticae CYP392A11, a cytochrome P450 that hydroxylates the METI acaricides cyenopyrafen and fenpyroximate.
    Riga M; Myridakis A; Tsakireli D; Morou E; Stephanou EG; Nauen R; Van Leeuwen T; Douris V; Vontas J
    Insect Biochem Mol Biol; 2015 Oct; 65():91-9. PubMed ID: 26363294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenotypic- and Genotypic-Resistance Detection for Adaptive Resistance Management in Tetranychus urticae Koch.
    Kwon DH; Kang TJ; Kim YH; Lee SH
    PLoS One; 2015; 10(11):e0139934. PubMed ID: 26545209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.