These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 28835698)

  • 21. Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging.
    Liba O; SoRelle ED; Sen D; de la Zerda A
    Sci Rep; 2016 Mar; 6():23337. PubMed ID: 26987475
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Choroidal Neovascularization in Malattia Leventinese Diagnosed Using Optical Coherence Tomography Angiography.
    Serra R; Coscas F; Messaoudi N; Srour M; Souied E
    Am J Ophthalmol; 2017 Apr; 176():108-117. PubMed ID: 28088509
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography.
    Srinivasan VJ; Ko TH; Wojtkowski M; Carvalho M; Clermont A; Bursell SE; Song QH; Lem J; Duker JS; Schuman JS; Fujimoto JG
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5522-8. PubMed ID: 17122144
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo imaging of the inner retinal layer structure in mice after eye-opening using visible-light optical coherence tomography.
    Beckmann L; Cai Z; Cole J; Miller DA; Liu M; Grannonico M; Zhang X; Ryu HJ; Netland PA; Liu X; Zhang HF
    Exp Eye Res; 2021 Oct; 211():108756. PubMed ID: 34492282
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dose-dependent retinal changes following sodium iodate administration: application of spectral-domain optical coherence tomography for monitoring of retinal injury and endogenous regeneration.
    Machalińska A; Lejkowska R; Duchnik M; Kawa M; Rogińska D; Wiszniewska B; Machaliński B
    Curr Eye Res; 2014 Oct; 39(10):1033-41. PubMed ID: 24661221
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of Thermal Effects of Photocoagulation on Retinal Tissue Using Fine-Motion-Sensitive Dynamic Optical Coherence Tomography.
    Kurokawa K; Makita S; Yasuno Y
    PLoS One; 2016; 11(6):e0156761. PubMed ID: 27271952
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fully automated detection of retinal disorders by image-based deep learning.
    Li F; Chen H; Liu Z; Zhang X; Wu Z
    Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent developments in optical coherence tomography for imaging the retina.
    van Velthoven ME; Faber DJ; Verbraak FD; van Leeuwen TG; de Smet MD
    Prog Retin Eye Res; 2007 Jan; 26(1):57-77. PubMed ID: 17158086
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In-vivo retinal imaging with off-axis full-field time-domain optical coherence tomography.
    Sudkamp H; Koch P; Spahr H; Hillmann D; Franke G; Münst M; Reinholz F; Birngruber R; Hüttmann G
    Opt Lett; 2016 Nov; 41(21):4987-4990. PubMed ID: 27805666
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stereological Method in Optical Coherence Tomography for In Vivo Evaluation of Laser-Induced Choroidal Neovascularization.
    Trujillo-Sanchez GP; Martinez-Camarillo JC; Spee CK; Hinton DR; Humayun MS; Weitz AC
    Ophthalmic Surg Lasers Imaging Retina; 2018 Sep; 49(9):e65-e74. PubMed ID: 30222821
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prevalences of segmentation errors and motion artifacts in OCT-angiography differ among retinal diseases.
    Lauermann JL; Woetzel AK; Treder M; Alnawaiseh M; Clemens CR; Eter N; Alten F
    Graefes Arch Clin Exp Ophthalmol; 2018 Oct; 256(10):1807-1816. PubMed ID: 29982897
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy.
    Virgili G; Menchini F; Murro V; Peluso E; Rosa F; Casazza G
    Cochrane Database Syst Rev; 2011 Jul; (7):CD008081. PubMed ID: 21735421
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contactless optical coherence tomography of the eyes of freestanding individuals with a robotic scanner.
    Draelos M; Ortiz P; Qian R; Viehland C; McNabb R; Hauser K; Kuo AN; Izatt JA
    Nat Biomed Eng; 2021 Jul; 5(7):726-736. PubMed ID: 34253888
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Method for single illumination source combined optical coherence tomography and fluorescence imaging of fluorescently labeled ocular structures in transgenic mice.
    McNabb RP; Blanco T; Bomze HM; Tseng HC; Saban DR; Izatt JA; Kuo AN
    Exp Eye Res; 2016 Oct; 151():68-74. PubMed ID: 27519152
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical coherence tomography as a diagnostic tool for retinal pathologies in avian ophthalmology.
    Rauscher FG; Azmanis P; Körber N; Koch C; Hübel J; Vetterlein W; Werner B; Thielebein J; Dawczynski J; Wiedemann P; Reichenbach A; Francke M; Krautwald-Junghanns ME
    Invest Ophthalmol Vis Sci; 2013 Dec; 54(13):8259-69. PubMed ID: 24282225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical Coherence Tomography for Ophthalmology Imaging.
    Qin J; An L
    Adv Exp Med Biol; 2021; 3233():197-216. PubMed ID: 34053029
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of swept source optical coherence tomography and spectral domain optical coherence tomography in polypoidal choroidal vasculopathy.
    Ting DS; Cheung GC; Lim LS; Yeo IY
    Clin Exp Ophthalmol; 2015 Dec; 43(9):815-9. PubMed ID: 26183457
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Indocyanine green provides absorption and spectral contrast for optical coherence tomography at 840  nm in vivo.
    Merkle CW; Augustin M; Harper DJ; Baumann B
    Opt Lett; 2020 Apr; 45(8):2359-2362. PubMed ID: 32287239
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY FINDINGS IN ENDOGENOUS CANDIDA ENDOPHTHALMITIS AND THEIR CLINICAL RELEVANCE.
    Invernizzi A; Symes R; Miserocchi E; Cozzi M; Cereda M; Fogliato G; Staurenghi G; Cimino L; McCluskey P
    Retina; 2018 May; 38(5):1011-1018. PubMed ID: 28492430
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo evaluation of laser-induced choroidal neovascularization using spectral-domain optical coherence tomography.
    Giani A; Thanos A; Roh MI; Connolly E; Trichonas G; Kim I; Gragoudas E; Vavvas D; Miller JW
    Invest Ophthalmol Vis Sci; 2011 Jun; 52(6):3880-7. PubMed ID: 21296820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.