These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 28836010)

  • 21. Extracellular matrix integrity affects the mechanical behaviour of in-situ chondrocytes under compression.
    Moo EK; Han SK; Federico S; Sibole SC; Jinha A; Abu Osman NA; Pingguan-Murphy B; Herzog W
    J Biomech; 2014 Mar; 47(5):1004-13. PubMed ID: 24480705
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of finite compressive strain on chondrocyte viability in statically loaded bovine articular cartilage.
    Chahine NO; Ateshian GA; Hung CT
    Biomech Model Mechanobiol; 2007 Jan; 6(1-2):103-11. PubMed ID: 16821016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic deformational loading results in selective application of mechanical stimulation in a layered, tissue-engineered cartilage construct.
    Ng KW; Mauck RL; Statman LY; Lin EY; Ateshian GA; Hung CT
    Biorheology; 2006; 43(3,4):497-507. PubMed ID: 16912421
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A poroviscohyperelastic model for numerical analysis of mechanical behavior of single chondrocyte.
    Nguyen TD; Oloyede A; Gu Y
    Comput Methods Biomech Biomed Engin; 2016; 19(2):126-36. PubMed ID: 25588670
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The biomechanical role of the chondrocyte pericellular matrix in articular cartilage.
    Alexopoulos LG; Setton LA; Guilak F
    Acta Biomater; 2005 May; 1(3):317-25. PubMed ID: 16701810
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The mechanical behaviour of chondrocytes predicted with a micro-structural model of articular cartilage.
    Han SK; Federico S; Grillo A; Giaquinta G; Herzog W
    Biomech Model Mechanobiol; 2007 Apr; 6(3):139-50. PubMed ID: 16506020
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The deformation behavior and mechanical properties of chondrocytes in articular cartilage.
    Guilak F; Jones WR; Ting-Beall HP; Lee GM
    Osteoarthritis Cartilage; 1999 Jan; 7(1):59-70. PubMed ID: 10367015
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regional variations in growth plate chondrocyte deformation as predicted by three-dimensional multi-scale simulations.
    Gao J; Roan E; Williams JL
    PLoS One; 2015; 10(4):e0124862. PubMed ID: 25885547
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiscale modeling of growth plate cartilage mechanobiology.
    Gao J; Williams JL; Roan E
    Biomech Model Mechanobiol; 2017 Apr; 16(2):667-679. PubMed ID: 27770213
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Osteoarthritic changes in the biphasic mechanical properties of the chondrocyte pericellular matrix in articular cartilage.
    Alexopoulos LG; Williams GM; Upton ML; Setton LA; Guilak F
    J Biomech; 2005 Mar; 38(3):509-17. PubMed ID: 15652549
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of matrix inhomogeneities on the cellular mechanical environment in tissue-engineered cartilage: an in silico investigation.
    Khoshgoftar M; Wilson W; Ito K; van Donkelaar CC
    Tissue Eng Part C Methods; 2014 Feb; 20(2):104-15. PubMed ID: 23679046
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterizing liquid redistribution in a biphasic vibrating vocal fold using finite element analysis.
    Kvit AA; Devine EE; Jiang JJ; Vamos AC; Tao C
    J Voice; 2015 May; 29(3):265-72. PubMed ID: 25619469
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computationally efficient finite element evaluation of natural patellofemoral mechanics.
    Fitzpatrick CK; Baldwin MA; Rullkoetter PJ
    J Biomech Eng; 2010 Dec; 132(12):121013. PubMed ID: 21142327
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Viability and volume of in situ bovine articular chondrocytes-changes following a single impact and effects of medium osmolarity.
    Bush PG; Hodkinson PD; Hamilton GL; Hall AC
    Osteoarthritis Cartilage; 2005 Jan; 13(1):54-65. PubMed ID: 15639638
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic compression of single cells.
    Shieh AC; Athanasiou KA
    Osteoarthritis Cartilage; 2007 Mar; 15(3):328-34. PubMed ID: 17045815
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of the Effects of Extracellular Osmotic Pressure on Morphology and Mechanical Properties of Individual Chondrocyte.
    Nguyen TD; Oloyede A; Singh S; Gu Y
    Cell Biochem Biophys; 2016 Jun; 74(2):229-40. PubMed ID: 26831866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chondrocyte deformation under extreme tissue strain in two regions of the rabbit knee joint.
    Madden R; Han SK; Herzog W
    J Biomech; 2013 Feb; 46(3):554-60. PubMed ID: 23089458
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A poroelastic finite element model of the bone-cartilage unit to determine the effects of changes in permeability with osteoarthritis.
    Stender ME; Regueiro RA; Ferguson VL
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(3):319-331. PubMed ID: 27635796
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A theoretical analysis of water transport through chondrocytes.
    Ateshian GA; Costa KD; Hung CT
    Biomech Model Mechanobiol; 2007 Jan; 6(1-2):91-101. PubMed ID: 16705444
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of strain-rate-dependent mechanical behavior of living and fixed osteocytes and chondrocytes using atomic force microscopy and inverse finite element analysis.
    Nguyen TD; Gu Y
    J Biomech Eng; 2014 Oct; 136(10):101004. PubMed ID: 25068722
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.