These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28836023)

  • 1. Studies on reaction of glutathionylcobalamin with hypochlorite. Evidence of protective action of glutathionyl-ligand against corrin modification by hypochlorite.
    Dereven'kov IA; Makarov SV; Shpagilev NI; Salnikov DS; Koifman OI
    Biometals; 2017 Oct; 30(5):757-764. PubMed ID: 28836023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the formation of glutathionylcobalamin: any free intracellular aquacobalamin is likely to be rapidly and irreversibly converted to glutathionylcobalamin.
    Xia L; Cregan AG; Berben LA; Brasch NE
    Inorg Chem; 2004 Oct; 43(21):6848-57. PubMed ID: 15476387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic studies on the reaction of cob(II)alamin with hypochlorous acid: Evidence for one electron oxidation of the metal center and corrin ring destruction.
    Dassanayake RS; Farhath MM; Shelley JT; Basu S; Brasch NE
    J Inorg Biochem; 2016 Oct; 163():81-87. PubMed ID: 27567143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heteronuclear nuclear magnetic resonance studies of cobalt corrinoids. 15. The structure of glutathionylcobalamin: a 1H and 13C two-dimensional nuclear magnetic resonance study at 600 MHz.
    Brown KL; Zou X; Savon SR; Jacobsen DW
    Biochemistry; 1993 Aug; 32(33):8421-8. PubMed ID: 8357793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Processing of glutathionylcobalamin by a bovine B12 trafficking chaperone bCblC involved in intracellular B12 metabolism.
    Jeong J; Park J; Park J; Kim J
    Biochem Biophys Res Commun; 2014 Jan; 443(1):173-8. PubMed ID: 24286755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The X-ray crystal structure of glutathionylcobalamin revealed.
    Hannibal L; Smith CA; Jacobsen DW
    Inorg Chem; 2010 Nov; 49(21):9921-7. PubMed ID: 20863098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The adducts of cyano- and aquacobalamin with hypochlorite.
    Lehene M; Brânzanic AMV; Silaghi-Dumitrescu R
    J Biol Inorg Chem; 2023 Sep; 28(6):583-589. PubMed ID: 37493822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic and computational studies of glutathionylcobalamin: nature of Co-S bonding and comparison to Co-C bonding in coenzyme B12.
    Conrad KS; Brunold TC
    Inorg Chem; 2011 Sep; 50(18):8755-66. PubMed ID: 21859072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, characterization, solution stability, and X-ray crystal structure of the thiolatocobalamin gamma-glutamylcysteinylcobalamin, a dipeptide analogue of glutathionylcobalamin: insights into the enhanced Co-S bond stability of the natural product glutathionylcobalamin.
    Suto RK; Brasch NE; Anderson OP; Finke RG
    Inorg Chem; 2001 Jun; 40(12):2686-92. PubMed ID: 11375680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure of the rat vitamin B
    Bokhove M; Kawamura T; Okumura H; Goto S; Kawano Y; Werner S; Jarczowski F; Klimyuk V; Saito A; Kumasaka T
    J Biol Chem; 2024 May; 300(5):107289. PubMed ID: 38636663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, characterization, and glutathionylation of cobalamin model complexes [Co(N4PyCO2Me)Cl]Cl2 and [Co(Bn-CDPy3)Cl]Cl2.
    Prakash J; Kodanko JJ
    Inorg Chem; 2012 Feb; 51(4):2689-98. PubMed ID: 22316335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. meso-Bromination of cyano- and aquacobalamins facilitates their processing into Co(II)-species by glutathione.
    Dereven'kov IA; Osokin VS; Khodov IA; Sobornova VV; Ershov NA; Makarov SV
    J Biol Inorg Chem; 2023 Sep; 28(6):571-581. PubMed ID: 37479902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The reaction of nitric oxide with glutathionylcobalamin.
    Zheng D; Birke RL
    J Am Chem Soc; 2002 Aug; 124(31):9066-7. PubMed ID: 12149007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The reaction of HOCl and cyanocobalamin: corrin destruction and the liberation of cyanogen chloride.
    Abu-Soud HM; Maitra D; Byun J; Souza CEA; Banerjee J; Saed GM; Diamond MP; Andreana PR; Pennathur S
    Free Radic Biol Med; 2012 Feb; 52(3):616-625. PubMed ID: 22138102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the nature of the Co(III) ion in cobalamins: a comparison of the reaction of aquacobalamin (vitamin B12a) and aqua-10-chlorocobalamin with some anionic and N-donor ligands.
    Knapton L; Marques HM
    Dalton Trans; 2005 Mar; (5):889-95. PubMed ID: 15726141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward Quantitatively Accurate Calculation of the Redox-Associated Acid-Base and Ligand Binding Equilibria of Aquacobalamin.
    Johnston RC; Zhou J; Smith JC; Parks JM
    J Phys Chem B; 2016 Aug; 120(30):7307-18. PubMed ID: 27391132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a B₁₂trafficking chaperone protein from caenorhabditis elegans.
    Park J; Kim J
    Protein Pept Lett; 2015; 22(1):31-8. PubMed ID: 25256267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactivity of aquacobalamin and reduced cobalamin toward S-nitrosoglutathione and S-nitroso-N-acetylpenicillamine.
    Wolak M; Stochel G; van Eldik R
    Inorg Chem; 2006 Feb; 45(3):1367-79. PubMed ID: 16441149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of cyanocobalamin chlorination by hypochlorous acid.
    Dereven'kov IA; Osokin VS; Hannibal L; Makarov SV; Khodov IA; Koifman OI
    J Biol Inorg Chem; 2021 Jun; 26(4):427-434. PubMed ID: 33914169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protection of aquo/hydroxocobalamin from reduced glutathione by a B12 trafficking chaperone.
    Jeong J; Ha TS; Kim J
    BMB Rep; 2011 Mar; 44(3):170-5. PubMed ID: 21429294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.