These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Lessons learned in induced fit docking and metadynamics in the Drug Design Data Resource Grand Challenge 2. Baumgartner MP; Evans DA J Comput Aided Mol Des; 2018 Jan; 32(1):45-58. PubMed ID: 29127581 [TBL] [Abstract][Full Text] [Related]
3. CDOCKER and λ-dynamics for prospective prediction in D₃R Grand Challenge 2. Ding X; Hayes RL; Vilseck JZ; Charles MK; Brooks CL J Comput Aided Mol Des; 2018 Jan; 32(1):89-102. PubMed ID: 28884249 [TBL] [Abstract][Full Text] [Related]
4. Using physics-based pose predictions and free energy perturbation calculations to predict binding poses and relative binding affinities for FXR ligands in the D3R Grand Challenge 2. Athanasiou C; Vasilakaki S; Dellis D; Cournia Z J Comput Aided Mol Des; 2018 Jan; 32(1):21-44. PubMed ID: 29119352 [TBL] [Abstract][Full Text] [Related]
5. Optimal affinity ranking for automated virtual screening validated in prospective D3R grand challenges. Wingert BM; Oerlemans R; Camacho CJ J Comput Aided Mol Des; 2018 Jan; 32(1):287-297. PubMed ID: 28918599 [TBL] [Abstract][Full Text] [Related]
6. Blinded evaluation of farnesoid X receptor (FXR) ligands binding using molecular docking and free energy calculations. Selwa E; Elisée E; Zavala A; Iorga BI J Comput Aided Mol Des; 2018 Jan; 32(1):273-286. PubMed ID: 28865056 [TBL] [Abstract][Full Text] [Related]
7. Binding free energy predictions of farnesoid X receptor (FXR) agonists using a linear interaction energy (LIE) approach with reliability estimation: application to the D3R Grand Challenge 2. Rifai EA; van Dijk M; Vermeulen NPE; Geerke DP J Comput Aided Mol Des; 2018 Jan; 32(1):239-249. PubMed ID: 28889350 [TBL] [Abstract][Full Text] [Related]
8. Performance of multiple docking and refinement methods in the pose prediction D3R prospective Grand Challenge 2016. Fradera X; Verras A; Hu Y; Wang D; Wang H; Fells JI; Armacost KA; Crespo A; Sherborne B; Wang H; Peng Z; Gao YD J Comput Aided Mol Des; 2018 Jan; 32(1):113-127. PubMed ID: 28913710 [TBL] [Abstract][Full Text] [Related]
10. Workflows and performances in the ranking prediction of 2016 D3R Grand Challenge 2: lessons learned from a collaborative effort. Gao YD; Hu Y; Crespo A; Wang D; Armacost KA; Fells JI; Fradera X; Wang H; Wang H; Sherborne B; Verras A; Peng Z J Comput Aided Mol Des; 2018 Jan; 32(1):129-142. PubMed ID: 28986733 [TBL] [Abstract][Full Text] [Related]
11. Combining self- and cross-docking as benchmark tools: the performance of DockBench in the D3R Grand Challenge 2. Salmaso V; Sturlese M; Cuzzolin A; Moro S J Comput Aided Mol Des; 2018 Jan; 32(1):251-264. PubMed ID: 28840418 [TBL] [Abstract][Full Text] [Related]
12. Prospective evaluation of shape similarity based pose prediction method in D3R Grand Challenge 2015. Kumar A; Zhang KY J Comput Aided Mol Des; 2016 Sep; 30(9):685-693. PubMed ID: 27484214 [TBL] [Abstract][Full Text] [Related]
19. Docking of small molecules to farnesoid X receptors using AutoDock Vina with the Convex-PL potential: lessons learned from D3R Grand Challenge 2. Kadukova M; Grudinin S J Comput Aided Mol Des; 2018 Jan; 32(1):151-162. PubMed ID: 28913782 [TBL] [Abstract][Full Text] [Related]