These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 28836076)

  • 21. Predicting the affinity of Farnesoid X Receptor ligands through a hierarchical ranking protocol: a D3R Grand Challenge 2 case study.
    Réau M; Langenfeld F; Zagury JF; Montes M
    J Comput Aided Mol Des; 2018 Jan; 32(1):231-238. PubMed ID: 28913743
    [TBL] [Abstract][Full Text] [Related]  

  • 22. D3R Grand Challenge 2: blind prediction of protein-ligand poses, affinity rankings, and relative binding free energies.
    Gaieb Z; Liu S; Gathiaka S; Chiu M; Yang H; Shao C; Feher VA; Walters WP; Kuhn B; Rudolph MG; Burley SK; Gilson MK; Amaro RE
    J Comput Aided Mol Des; 2018 Jan; 32(1):1-20. PubMed ID: 29204945
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimal strategies for virtual screening of induced-fit and flexible target in the 2015 D3R Grand Challenge.
    Ye Z; Baumgartner MP; Wingert BM; Camacho CJ
    J Comput Aided Mol Des; 2016 Sep; 30(9):695-706. PubMed ID: 27573981
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting binding poses and affinity ranking in D3R Grand Challenge using PL-PatchSurfer2.0.
    Shin WH; Kihara D
    J Comput Aided Mol Des; 2019 Dec; 33(12):1083-1094. PubMed ID: 31506789
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relative binding affinity prediction of farnesoid X receptor in the D3R Grand Challenge 2 using FEP.
    Schindler C; Rippmann F; Kuhn D
    J Comput Aided Mol Des; 2018 Jan; 32(1):265-272. PubMed ID: 28900792
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mathematical deep learning for pose and binding affinity prediction and ranking in D3R Grand Challenges.
    Nguyen DD; Cang Z; Wu K; Wang M; Cao Y; Wei GW
    J Comput Aided Mol Des; 2019 Jan; 33(1):71-82. PubMed ID: 30116918
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A pose prediction approach based on ligand 3D shape similarity.
    Kumar A; Zhang KY
    J Comput Aided Mol Des; 2016 Jun; 30(6):457-69. PubMed ID: 27379501
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Discovery of new non-steroidal farnesoid X receptor modulators through 3D shape similarity search and structure-based virtual screening.
    Wang L; Si P; Sheng Y; Chen Y; Wan P; Shen X; Tang Y; Chen L; Li W
    Chem Biol Drug Des; 2015 Apr; 85(4):481-7. PubMed ID: 25228339
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Large scale free energy calculations for blind predictions of protein-ligand binding: the D3R Grand Challenge 2015.
    Deng N; Flynn WF; Xia J; Vijayan RS; Zhang B; He P; Mentes A; Gallicchio E; Levy RM
    J Comput Aided Mol Des; 2016 Sep; 30(9):743-751. PubMed ID: 27562018
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modern drug design: the implication of using artificial neuronal networks and multiple molecular dynamic simulations.
    Yakovenko O; Jones SJM
    J Comput Aided Mol Des; 2018 Jan; 32(1):299-311. PubMed ID: 29134430
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Docking-undocking combination applied to the D3R Grand Challenge 2015.
    Ruiz-Carmona S; Barril X
    J Comput Aided Mol Des; 2016 Sep; 30(9):805-815. PubMed ID: 27709317
    [TBL] [Abstract][Full Text] [Related]  

  • 32. D3R Grand Challenge 4: prospective pose prediction of BACE1 ligands with AutoDock-GPU.
    Santos-Martins D; Eberhardt J; Bianco G; Solis-Vasquez L; Ambrosio FA; Koch A; Forli S
    J Comput Aided Mol Des; 2019 Dec; 33(12):1071-1081. PubMed ID: 31691920
    [TBL] [Abstract][Full Text] [Related]  

  • 33. D3R grand challenge 2015: Evaluation of protein-ligand pose and affinity predictions.
    Gathiaka S; Liu S; Chiu M; Yang H; Stuckey JA; Kang YN; Delproposto J; Kubish G; Dunbar JB; Carlson HA; Burley SK; Walters WP; Amaro RE; Feher VA; Gilson MK
    J Comput Aided Mol Des; 2016 Sep; 30(9):651-668. PubMed ID: 27696240
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identifying Dopamine D3 Receptor Ligands through Virtual Screening and Exploring the Binding Modes of Hit Compounds.
    Jin H; Wu C; Su R; Sun T; Li X; Guo C
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677583
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving binding mode and binding affinity predictions of docking by ligand-based search of protein conformations: evaluation in D3R grand challenge 2015.
    Xu X; Yan C; Zou X
    J Comput Aided Mol Des; 2017 Aug; 31(8):689-699. PubMed ID: 28668990
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SPOT-Ligand: Fast and effective structure-based virtual screening by binding homology search according to ligand and receptor similarity.
    Yang Y; Zhan J; Zhou Y
    J Comput Chem; 2016 Jul; 37(18):1734-9. PubMed ID: 27074979
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Binding affinities of the farnesoid X receptor in the D3R Grand Challenge 2 estimated by free-energy perturbation and docking.
    Olsson MA; García-Sosa AT; Ryde U
    J Comput Aided Mol Des; 2018 Jan; 32(1):211-224. PubMed ID: 28879536
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of Shape Similarity in Pose Selection and Virtual Screening in CSARdock2014 Exercise.
    Kumar A; Zhang KY
    J Chem Inf Model; 2016 Jun; 56(6):965-73. PubMed ID: 26247231
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A systematic pipeline of protein structure selection for computer-aided drug discovery: A case study on T790M/L858R mutant EGFR structures.
    Das AP; Nandekar P; Mathur P; Agarwal SM
    Protein Sci; 2023 Sep; 32(9):e4740. PubMed ID: 37515373
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of domain knowledge on blinded predictions of binding energies by alchemical free energy calculations.
    Mey ASJS; Jiménez JJ; Michel J
    J Comput Aided Mol Des; 2018 Jan; 32(1):199-210. PubMed ID: 29134431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.