These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 28836179)

  • 1. Facile Synthesis of Colored and Conducting CuSCN Composite Coated with CuS Nanoparticles.
    Premalal EVA; Kannangara YY; Ratnayake SP; Nalin de Silva KM
    Nanoscale Res Lett; 2017 Aug; 12(1):507. PubMed ID: 28836179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amylose-directed synthesis of CuS composite nanowires and microspheres.
    Li Y; Hu J; Liu G; Zhang G; Zou H; Shi J
    Carbohydr Polym; 2013 Jan; 92(1):555-63. PubMed ID: 23218335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ growth of Z-scheme CuS/CuSCN heterojunction to passivate surface defects and enhance charge transport.
    Ning P; Liang J; Li L; Chen D; Qin L; Yao X; Chen H; Huang Y
    J Colloid Interface Sci; 2021 May; 590():407-414. PubMed ID: 33561590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced electrochemical capacitance of polyimidazole coated covellite CuS dispersed CNT composite materials for application in supercapacitors.
    Ravi S; Gopi CV; Kim HJ
    Dalton Trans; 2016 Aug; 45(31):12362-71. PubMed ID: 27418015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile synthesis of biocompatible cysteine-coated CuS nanoparticles with high photothermal conversion efficiency for cancer therapy.
    Liu X; Li B; Fu F; Xu K; Zou R; Wang Q; Zhang B; Chen Z; Hu J
    Dalton Trans; 2014 Aug; 43(30):11709-15. PubMed ID: 24950757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper sulfide nanoparticles for photothermal ablation of tumor cells.
    Li Y; Lu W; Huang Q; Huang M; Li C; Chen W
    Nanomedicine (Lond); 2010 Oct; 5(8):1161-71. PubMed ID: 21039194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper-Organic Framework Fabricated with CuS Nanoparticles: Synthesis, Electrical Conductivity, and Electrocatalytic Activities for Oxygen Reduction Reaction.
    Cho K; Han SH; Suh MP
    Angew Chem Int Ed Engl; 2016 Dec; 55(49):15301-15305. PubMed ID: 27774771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of pH on crystal characteristics and IR absorbance of copper sulfide nanoparticles.
    Jung D; Lee S; Kim MS; Kim BW
    J Nanosci Nanotechnol; 2013 Oct; 13(10):7169-72. PubMed ID: 24245220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile Preparation of CuS Nanoparticles from the Interfaces of Hydrophobic Ionic Liquids and Water.
    Fan Y; Li Y; Han X; Wu X; Zhang L; Wang Q
    Molecules; 2019 Oct; 24(20):. PubMed ID: 31640126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial N-Cu-S coordination mode of CuSCN/C
    Zhao Z; Yang H; Zhu Y; Luo S; Ma J
    Nanoscale; 2019 Jul; 11(27):12938-12945. PubMed ID: 31259334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical properties of annealed ZnO nanowire/CuSCN heterojunctions for self-powered UV photodetectors.
    Garnier J; Parize R; Appert E; Chaix-Pluchery O; Kaminski-Cachopo A; Consonni V
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5820-9. PubMed ID: 25706583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of reaction parameters in hydrothermal synthesis: a strategy towards the formation of CuS hexagonal plates.
    Auyoong YL; Yap PL; Huang X; Abd Hamid SB
    Chem Cent J; 2013; 7():67. PubMed ID: 23575312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper(I) thiocyanate-amine networks: synthesis, structure, and luminescence behavior.
    Miller KM; McCullough SM; Lepekhina EA; Thibau IJ; Pike RD; Li X; Killarney JP; Patterson HH
    Inorg Chem; 2011 Aug; 50(15):7239-49. PubMed ID: 21728324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green synthesis of covellite nanocrystals using biologically generated sulfide: potential for bioremediation systems.
    da Costa JP; Girão AV; Lourenço JP; Monteiro OC; Trindade T; Costa MC
    J Environ Manage; 2013 Oct; 128():226-32. PubMed ID: 23747373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile and low temperature route to synthesis of CuS nanostructure in mesoporous material by solvothermal method.
    Sohrabnezhad Sh; Zanjanchi MA; Hosseingholizadeh S; Rahnama R
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 123():142-50. PubMed ID: 24394530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and Visible-Light Driven Photocatalytic Properties of CuS/Reduced Graphene Oxide Composites.
    Xing YJ; Shen Y; Hu XS; Chen SN
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1696-1704. PubMed ID: 29448647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled synthesis and catalytic activity of copper sulfide nanostructured assemblies with different morphologies.
    Kundu J; Pradhan D
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1823-34. PubMed ID: 24437513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural, Optical and Electrical Properties of p-CuS:Cu(+)and n-CuS:Sn(4+) Films Deposited with a Chemical Bath Deposition.
    He H; Huang J; Fei J; Lu J
    Recent Pat Nanotechnol; 2015; 9(2):139-45. PubMed ID: 27009128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A facile strategy to decorate Cu₉S₅ nanocrystals on polyaniline nanowires and their synergetic catalytic properties.
    Lu XF; Bian XJ; Li ZC; Chao DM; Wang C
    Sci Rep; 2013 Oct; 3():2955. PubMed ID: 24129741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of conducting polyaniline-copper composites.
    Liu A; Bac LH; Kim JS; Kim BK; Kim JC
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7728-33. PubMed ID: 24245323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.