BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28836182)

  • 1. NAD
    Hu Y; Zhou Y; Mao Z; Li H; Chen F; Shao Y
    AMB Express; 2017 Aug; 7(1):166. PubMed ID: 28836182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of cyclic AMP on development and secondary metabolites of Monascus ruber M-7.
    Lai Y; Wang L; Qing L; Chen F
    Lett Appl Microbiol; 2011 Apr; 52(4):420-6. PubMed ID: 21299575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histone deacetylase MrHos3 negatively regulates the production of citrinin and pigments in Monascus ruber.
    Liu Q; Zheng Y; Liu B; Tang F; Shao Y
    J Basic Microbiol; 2023 Oct; 63(10):1128-1138. PubMed ID: 37236161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mrhst4 gene, coding for NAD+-dependent deacetylase is involved in citrinin production of Monascus ruber.
    Hu Y; Zheng Y; Liu B; Gong Y; Shao Y
    J Appl Microbiol; 2023 Mar; 134(3):. PubMed ID: 36849138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of MrEsa1 accelerated growth, increased ascospores yield, and the polyketide production in Monascus ruber.
    Zhang J; Shao Y; Chen F
    J Basic Microbiol; 2023 Jun; 63(6):668-677. PubMed ID: 36760018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Light Intensity and Color on the Biomass, Extracellular Red Pigment, and Citrinin Production of Monascus ruber.
    Wang L; Dai Y; Chen W; Shao Y; Chen F
    J Agric Food Chem; 2016 Dec; 64(50):9506-9514. PubMed ID: 27998068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Mga1, a G-protein alpha-subunit gene involved in regulating citrinin and pigment production in Monascus ruber M7.
    Li L; Shao Y; Li Q; Yang S; Chen F
    FEMS Microbiol Lett; 2010 Jul; 308(2):108-14. PubMed ID: 20500530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mrada3 is required for sexual reproduction and secondary metabolite production in industrial fungi Monascus strain.
    Gao J; Song C; Zhang J; Hu Y; Shao Y
    J Appl Microbiol; 2022 Aug; 133(2):591-606. PubMed ID: 35451171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Safety evaluation of mycotoxin citrinin production from
    Yoon HR; Ku D; Han S; Shin SC; Kim HW; Kim HJ
    3 Biotech; 2022 Sep; 12(9):214. PubMed ID: 35959167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of Citrinin and Pigment Biosynthesis Mechanisms in
    Liang B; Du XJ; Li P; Sun CC; Wang S
    Front Microbiol; 2018; 9():1374. PubMed ID: 30002650
    [No Abstract]   [Full Text] [Related]  

  • 11. Inactivation of the global regulator LaeA in Monascus ruber results in a species-dependent response in sporulation and secondary metabolism.
    Liu Q; Cai L; Shao Y; Zhou Y; Li M; Wang X; Chen F
    Fungal Biol; 2016 Mar; 120(3):297-305. PubMed ID: 26895858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic analysis of red pigment and citrinin production by Monascus ruber as a function of organic acid accumulation.
    Hajjaj H; Blanc P; Groussac E; Uribelarrea J; Goma G; Loubiere P
    Enzyme Microb Technol; 2000 Nov; 27(8):619-625. PubMed ID: 11024526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ctnG gene encodes carbonic anhydrase involved in mycotoxin citrinin biosynthesis from Monascus aurantiacus.
    Li YP; Tang X; Wu W; Xu Y; Huang ZB; He QH
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(4):577-83. PubMed ID: 25482072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orf6 gene encoded glyoxalase involved in mycotoxin citrinin biosynthesis in Monascus purpureus YY-1.
    Liang B; Du X; Li P; Guo H; Sun C; Gao J; Wang S
    Appl Microbiol Biotechnol; 2017 Oct; 101(19):7281-7292. PubMed ID: 28831532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivation of MrSir2 in Monascus ruber Influenced the Developmental Process and the Production of Monascus Azaphilone Pigments.
    Zhang J; Yang Y; Mao Z; Yan Q; Chen Q; Yi M; Shao Y
    Appl Biochem Biotechnol; 2022 Dec; 194(12):5702-5716. PubMed ID: 35802237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight into the phylogeny and metabolic divergence of
    Zhang Z; Cui M; Chen P; Li J; Mao Z; Mao Y; Li Z; Guo Q; Wang C; Liao X; Liu H
    Front Microbiol; 2023; 14():1199144. PubMed ID: 37303795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of submerged and solid-state fermentation on pigment and citrinin production by Monascus purpureus.
    Zhang L; Li Z; Dai B; Zhang W; Yuan Y
    Acta Biol Hung; 2013 Sep; 64(3):385-94. PubMed ID: 24013899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transfigured Morphology and Ameliorated Production of Six
    Virk MS; Ramzan R; Virk MA; Yuan X; Chen F
    Microorganisms; 2020 Jan; 8(1):. PubMed ID: 31936171
    [No Abstract]   [Full Text] [Related]  

  • 19. mrflbA, encoding a putative FlbA, is involved in aerial hyphal development and secondary metabolite production in Monascus ruber M-7.
    Yang Y; Li L; Li X; Shao Y; Chen F
    Fungal Biol; 2012 Feb; 116(2):225-33. PubMed ID: 22289768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of red pigment/citrinin production ratio as a function of environmental conditions by monascus ruber.
    Hajjaj H; Blanc PJ; Groussac E; Goma G; Uribelarrea JL; Loubiere P
    Biotechnol Bioeng; 1999 Aug; 64(4):497-501. PubMed ID: 10397888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.