BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 28836310)

  • 1. Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography.
    Nakao T; Hanaoka S; Nomura Y; Sato I; Nemoto M; Miki S; Maeda E; Yoshikawa T; Hayashi N; Abe O
    J Magn Reson Imaging; 2018 Apr; 47(4):948-953. PubMed ID: 28836310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convolutional Neural Networks for the Detection and Measurement of Cerebral Aneurysms on Magnetic Resonance Angiography.
    Stember JN; Chang P; Stember DM; Liu M; Grinband J; Filippi CG; Meyers P; Jambawalikar S
    J Digit Imaging; 2019 Oct; 32(5):808-815. PubMed ID: 30511281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of 3D TOF-MRA and 3D CE-MRA at 3T for imaging of intracranial aneurysms.
    Cirillo M; Scomazzoni F; Cirillo L; Cadioli M; Simionato F; Iadanza A; Kirchin M; Righi C; Anzalone N
    Eur J Radiol; 2013 Dec; 82(12):e853-9. PubMed ID: 24103356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated computer-assisted detection system for cerebral aneurysms in time-of-flight magnetic resonance angiography using fully convolutional network.
    Chen G; Wei X; Lei H; Liqin Y; Yuxin L; Yakang D; Daoying G
    Biomed Eng Online; 2020 May; 19(1):38. PubMed ID: 32471439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated unruptured cerebral aneurysms detection in TOF MR angiography images using dual-channel SE-3D UNet: a multi-center research.
    Chen G; Yifang B; Jiajun Z; Dongdong W; Zhiyong Z; Ruoyu D; Bin D; Sirong P; Daoying G; Meng C; Yakang D; Yuxin L
    Eur Radiol; 2023 May; 33(5):3532-3543. PubMed ID: 36725720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A system to detect cerebral aneurysms in multimodality angiographic data sets.
    Hentschke CM; Beuing O; Paukisch H; Scherlach C; Skalej M; Tönnies KD
    Med Phys; 2014 Sep; 41(9):091904. PubMed ID: 25186391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection and characterization of intracranial aneurysms with MR angiography: comparison of volume-rendering and maximum-intensity-projection algorithms.
    Mallouhi A; Felber S; Chemelli A; Dessl A; Auer A; Schocke M; Jaschke WR; Waldenberger P
    AJR Am J Roentgenol; 2003 Jan; 180(1):55-64. PubMed ID: 12490476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surveillance of Unruptured Intracranial Saccular Aneurysms Using Noncontrast 3D-Black-Blood MRI: Comparison of 3D-TOF and Contrast-Enhanced MRA with 3D-DSA.
    Zhu C; Wang X; Eisenmenger L; Tian B; Liu Q; Degnan AJ; Hess C; Saloner D; Lu J
    AJNR Am J Neuroradiol; 2019 Jun; 40(6):960-966. PubMed ID: 31122914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of intracranial aneurysms with 7 T versus 1.5 T time-of-flight MR angiography - initial experience.
    Mönninghoff C; Maderwald S; Theysohn JM; Kraff O; Ladd SC; Ladd ME; Forsting M; Quick HH; Wanke I
    Rofo; 2009 Jan; 181(1):16-23. PubMed ID: 19115164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of a Deep-Learning Neural Network to Detect Intracranial Aneurysms from 3D TOF-MRA Compared to Human Readers.
    Faron A; Sichtermann T; Teichert N; Luetkens JA; Keulers A; Nikoubashman O; Freiherr J; Mpotsaris A; Wiesmann M
    Clin Neuroradiol; 2020 Sep; 30(3):591-598. PubMed ID: 31227844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the inflow zone of unruptured cerebral aneurysms: comparison of 4D flow MRI and 3D TOF MRA data.
    Futami K; Sano H; Misaki K; Nakada M; Ueda F; Hamada J
    AJNR Am J Neuroradiol; 2014 Jul; 35(7):1363-70. PubMed ID: 24610906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning-Based Detection of Intracranial Aneurysms in 3D TOF-MRA.
    Sichtermann T; Faron A; Sijben R; Teichert N; Freiherr J; Wiesmann M
    AJNR Am J Neuroradiol; 2019 Jan; 40(1):25-32. PubMed ID: 30573461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmentation of intracranial vessels and aneurysms in phase contrast magnetic resonance angiography using multirange filters and local variances.
    Law MW; Chung AC
    IEEE Trans Image Process; 2013 Mar; 22(3):845-59. PubMed ID: 22955902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diagnosis of unruptured intracranial aneurysms: 3T MR angiography versus 64-channel multi-detector row CT angiography.
    Hiratsuka Y; Miki H; Kiriyama I; Kikuchi K; Takahashi S; Matsubara I; Sadamoto K; Mochizuki T
    Magn Reson Med Sci; 2008; 7(4):169-78. PubMed ID: 19110511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning Approach for Generating MRA Images From 3D Quantitative Synthetic MRI Without Additional Scans.
    Fujita S; Hagiwara A; Otsuka Y; Hori M; Takei N; Hwang KP; Irie R; Andica C; Kamagata K; Akashi T; Kunishima Kumamaru K; Suzuki M; Wada A; Abe O; Aoki S
    Invest Radiol; 2020 Apr; 55(4):249-256. PubMed ID: 31977603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utility of noncontrast-enhanced time-resolved four-dimensional MR angiography with a vessel-selective technique for intracranial arteriovenous malformations.
    Fujima N; Osanai T; Shimizu Y; Yoshida A; Harada T; Nakayama N; Kudo K; Houkin K; Shirato H
    J Magn Reson Imaging; 2016 Oct; 44(4):834-45. PubMed ID: 26970348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning for MR Angiography: Automated Detection of Cerebral Aneurysms.
    Ueda D; Yamamoto A; Nishimori M; Shimono T; Doishita S; Shimazaki A; Katayama Y; Fukumoto S; Choppin A; Shimahara Y; Miki Y
    Radiology; 2019 Jan; 290(1):187-194. PubMed ID: 30351253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compressed Sensing 3-Dimensional Time-of-Flight Magnetic Resonance Angiography for Cerebral Aneurysms: Optimization and Evaluation.
    Fushimi Y; Fujimoto K; Okada T; Yamamoto A; Tanaka T; Kikuchi T; Miyamoto S; Togashi K
    Invest Radiol; 2016 Apr; 51(4):228-35. PubMed ID: 26606551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of unruptured cerebral artery aneurysms by MRA at 3.0 tesla: comparison with multislice helical computed tomographic angiography.
    Numminen J; Tarkiainen A; Niemelä M; Porras M; Hernesniemi J; Kangasniemi M
    Acta Radiol; 2011 Jul; 52(6):670-4. PubMed ID: 21525105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical feasibility study of 3D intracranial magnetic resonance angiography using compressed sensing.
    Lin Z; Zhang X; Guo L; Wang K; Jiang Y; Hu X; Huang Y; Wei J; Ma S; Liu Y; Zhu L; Zhuo Z; Liu J; Wang X
    J Magn Reson Imaging; 2019 Dec; 50(6):1843-1851. PubMed ID: 30980468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.