These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 28836738)

  • 81. Cell patterning by laser-assisted bioprinting.
    Devillard R; Pagès E; Correa MM; Kériquel V; Rémy M; Kalisky J; Ali M; Guillotin B; Guillemot F
    Methods Cell Biol; 2014; 119():159-74. PubMed ID: 24439284
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells.
    Ouyang L; Yao R; Zhao Y; Sun W
    Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915
    [TBL] [Abstract][Full Text] [Related]  

  • 83. 3D Bioprinting of Self-Standing Silk-Based Bioink.
    Zheng Z; Wu J; Liu M; Wang H; Li C; Rodriguez MJ; Li G; Wang X; Kaplan DL
    Adv Healthc Mater; 2018 Mar; 7(6):e1701026. PubMed ID: 29292585
    [TBL] [Abstract][Full Text] [Related]  

  • 84. 3D bioprinting of structural proteins.
    Włodarczyk-Biegun MK; Del Campo A
    Biomaterials; 2017 Jul; 134():180-201. PubMed ID: 28477541
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Cell sheet technology: a promising strategy in regenerative medicine.
    Li M; Ma J; Gao Y; Yang L
    Cytotherapy; 2019 Jan; 21(1):3-16. PubMed ID: 30473313
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A Review of Stem Cell Technology Targeting Hepatocyte Growth as an Alternative to Organ Transplantation.
    Goulart E
    Methods Mol Biol; 2023; 2575():181-193. PubMed ID: 36301476
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity.
    Kang HW; Lee SJ; Ko IK; Kengla C; Yoo JJ; Atala A
    Nat Biotechnol; 2016 Mar; 34(3):312-9. PubMed ID: 26878319
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Advances in three-dimensional bioprinting for hard tissue engineering.
    Park SH; Jung CS; Min BH
    Tissue Eng Regen Med; 2016 Dec; 13(6):622-635. PubMed ID: 30603444
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Study of gelatin as an effective energy absorbing layer for laser bioprinting.
    Xiong R; Zhang Z; Chai W; Chrisey DB; Huang Y
    Biofabrication; 2017 Jun; 9(2):024103. PubMed ID: 28597844
    [TBL] [Abstract][Full Text] [Related]  

  • 90. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering.
    Kundu J; Shim JH; Jang J; Kim SW; Cho DW
    J Tissue Eng Regen Med; 2015 Nov; 9(11):1286-97. PubMed ID: 23349081
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Development of Biocompatible 3D-Printed Artificial Blood Vessels through Multidimensional Approaches.
    Choi J; Lee EJ; Jang WB; Kwon SM
    J Funct Biomater; 2023 Oct; 14(10):. PubMed ID: 37888162
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Employing Extracellular Matrix-Based Tissue Engineering Strategies for Age-Dependent Tissue Degenerations.
    Jo Y; Hwang SH; Jang J
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502277
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Cell Encapsulation and 3D Bioprinting for Therapeutic Cell Transplantation.
    Samadi A; Moammeri A; Pourmadadi M; Abbasi P; Hosseinpour Z; Farokh A; Shamsabadipour A; Heydari M; Mohammadi MR
    ACS Biomater Sci Eng; 2023 Apr; 9(4):1862-1890. PubMed ID: 36877212
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Embedded 3D bioprinting - An emerging strategy to fabricate biomimetic & large vascularized tissue constructs.
    Budharaju H; Sundaramurthi D; Sethuraman S
    Bioact Mater; 2024 Feb; 32():356-384. PubMed ID: 37920828
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Bioprinting of kidney in vitro models: cells, biomaterials, and manufacturing techniques.
    Fransen MFJ; Addario G; Bouten CVC; Halary F; Moroni L; Mota C
    Essays Biochem; 2021 Aug; 65(3):587-602. PubMed ID: 34096573
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Improving patient outcomes with regenerative medicine: How the Regenerative Medicine Manufacturing Society plans to move the needle forward in cell manufacturing, standards, 3D bioprinting, artificial intelligence-enabled automation, education, and training.
    Hunsberger J; Simon C; Zylberberg C; Ramamoorthy P; Tubon T; Bedi R; Gielen K; Hansen C; Fischer L; Johnson J; Baraniak P; Mahdavi B; Pereira T; Hadjisavas M; Eaker S; Miller C
    Stem Cells Transl Med; 2020 Jul; 9(7):728-733. PubMed ID: 32222115
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Fabrication of scaffold-free tubular cardiac constructs using a Bio-3D printer.
    Arai K; Murata D; Verissimo AR; Mukae Y; Itoh M; Nakamura A; Morita S; Nakayama K
    PLoS One; 2018; 13(12):e0209162. PubMed ID: 30557409
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Bioprinting of artificial blood vessels.
    Ng HY; Lee KA; Kuo CN; Shen YF
    Int J Bioprint; 2018; 4(2):140. PubMed ID: 33102918
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Tissue strands as "bioink" for scale-up organ printing.
    Yu Y; Ozbolat IT
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1428-31. PubMed ID: 25570236
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Highlights on Advancing Frontiers in Tissue Engineering.
    Ashammakhi N; GhavamiNejad A; Tutar R; Fricker A; Roy I; Chatzistavrou X; Hoque Apu E; Nguyen KL; Ahsan T; Pountos I; Caterson EJ
    Tissue Eng Part B Rev; 2022 Jun; 28(3):633-664. PubMed ID: 34210148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.